Data Application#
This section contains the data applications discussed in the ColocBoost paper. Below, we outline key components and protocols for analyzing data using the colocboost
R package and related methodologies.
1. Vignettes for colocboost
#
This subsection provides a vignette demonstrating how to use the colocboost::colocboost()
function and other related functions to analyze data. The tutorials contains:
Input data format: Standard input data formats to perform
colocboost
.Running
colocboost
: Example workflows for multi-trait colocalization analysis using individual level data and summary statistics.Interpreting results: Guidance on interpreting and visualization the output of
colocboost
.
2. xQTL Protocols#
This subsection outlines protocols for xQTL analysis, including:
a. Bioinformatics pipeline for ColocBoost#
Tutorial of bioinformatics pipeline for ColocBoost tutorial link.
Steps to perform multi-trait colocalization using ColocBoost and data preparation protocol link.
b. Comparison with fine-mapping using SuSiE#
Protocol of fine-mapping analysis using SuSiE protocol link.
Example workflows for identifying causal variants.
c. Enrichment Analysis#
Steps to perform enrichment analysis using xQTL data protocol link.
Integration with external datasets for functional annotation.
d. SLDSC Analysis#
Protocol for stratified linkage disequilibrium score regression (SLDSC) protocol link.
Example use cases for partitioning heritability.