Perform modularity-based hierarchical clustering for a correlation matrix
Source:R/colocboost_inference.R
get_hierarchical_clusters.Rd
This function performs a modularity-based hierarchical clustering approach to identify clusters from a correlation matrix.
Value
A list containing:
- cluster
A binary matrix indicating the cluster membership of each variable.
- Q_modularity
The modularity values for the identified clusters.
See also
Other colocboost_utilities:
get_cormat()
,
get_cos()
,
get_cos_purity()
,
get_cos_summary()
,
get_ucos_summary()
Examples
# Example usage
set.seed(1)
N <- 100
P <- 4
sigma <- matrix(0.2, nrow = P, ncol = P)
diag(sigma) <- 1
sigma[1:2, 1:2] <- 0.9
sigma[3:4, 3:4] <- 0.9
X <- MASS::mvrnorm(N, rep(0, P), sigma)
cormat <- get_cormat(X)
clusters <- get_hierarchical_clusters(cormat)
clusters$cluster
#> [,1] [,2]
#> [1,] 1 0
#> [2,] 1 0
#> [3,] 0 1
#> [4,] 0 1
clusters$Q_modularity
#> [1] 3.588250e-17 3.618688e-01 2.714016e-01 1.809344e-01