Get colocalization summary table from a ColocBoost output.
Source:R/colocboost_output.R
get_cos_summary.Rd
get_cos_summary
get the colocalization summary table with or without the outcomes of interest.
Usage
get_cos_summary(
cb_output,
outcome_names = NULL,
interest_outcome = NULL,
region_name = NULL
)
Source
See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Interpret_ColocBoost_Output.html
Arguments
- cb_output
Output object from
colocboost
analysis- outcome_names
Optional vector of names of outcomes, which has the same order as Y in the original analysis.
- interest_outcome
Optional vector specifying a subset of outcomes from
outcome_names
to focus on. When provided, only colocalization events that include at least one of these outcomes will be returned.- region_name
Optional character string. When provided, adds a column with this gene name to the output table for easier filtering in downstream analyses.
Value
A summary table for colocalization events with the following columns:
- focal_outcome
The focal outcome being analyzed if exists. Otherwise, it is
FALSE
.- colocalized_outcomes
Colocalized outcomes for colocalization confidence set (CoS)
- cos_id
Unique identifier for colocalization confidence set (CoS)
- purity
Minimum absolute correlation of variables with in colocalization confidence set (CoS)
- top_variable
The variable with highest variant colocalization probability (VCP)
- top_variable_vcp
Variant colocalization probability for the top variable
- cos_npc
Normalized probability of colocalization
- min_npc_outcome
Minimum normalized probability of colocalized traits
- n_variables
Number of variables in colocalization confidence set (CoS)
- colocalized_index
Indices of colocalized variables
- colocalized_variables
List of colocalized variables
- colocalized_variables_vcp
Variant colocalization probabilities for all colocalized variables
See also
Other colocboost_utilities:
get_cormat()
,
get_cos()
,
get_cos_purity()
,
get_hierarchical_clusters()
,
get_ucos_summary()
Examples
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))
X <- MASS::mvrnorm(N, rep(0, P), sigma)
colnames(X) <- paste0("SNP", 1:P)
L <- 3
true_beta <- matrix(0, P, L)
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3
Y <- matrix(0, N, L)
for (l in 1:L) {
Y[, l] <- X %*% true_beta[, l] + rnorm(N, 0, 1)
}
res <- colocboost(X = X, Y = Y)
#> Validating input data.
#> Starting gradient boosting algorithm.
#> Gradient boosting for outcome 1 converged after 98 iterations!
#> Gradient boosting for outcome 3 converged after 106 iterations!
#> Gradient boosting for outcome 2 converged after 107 iterations!
#> Performing inference on colocalization events.
get_cos_summary(res)
#> focal_outcome colocalized_outcomes cos_id purity top_variable
#> 1 FALSE Y1; Y2 cos1:y1_y2 0.9047605 SNP10
#> top_variable_vcp cos_npc min_npc_outcome n_variables colocalized_index
#> 1 0.8519757 0.9999 0.9999 2 10; 9
#> colocalized_variables colocalized_variables_vcp
#> 1 SNP10; SNP9 0.851975728205876; 0.118928231146593