Alzheimer’s Disease GWAS Summary Data (Bellenguez)#
The SNP-level association testing summary statistics for Alzheimer’s disease from Bellenguez et al 2022 Nature Genetics. This study uses UK Biobank (UKBB) proxy AD samples
Contact#
Oluwatosin Olayinka, Hao Sun and Rui Dong
Path(s) to summary statistics#
- NIAGADS FTP:
/ftp_fgc_xqtl/projects/ADGWAS_Bellenguez_2022/ADGWAS2022.chr*.sumstat.tsv - CU
- meta-analysis results:
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/GCST90027158_buildGRCh38.tsv.gz(original data is already in hg38) - cohort-specific results are all stored under
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240300_Bellenguez/(original data is already in hg38)- EADB-core (EADB-TOPMed):
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240300_Bellenguez/EADB_core_cohort/EADB_core.tsv.gz(original data is already in hg38) - EADI:
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240300_Bellenguez/EADI_cohort/EADI.tsv.gz(original data is already in hg38) - GR@ACE:
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240300_Bellenguez/GRACE/GRACE_cohort/AD_4Pcs_TopMedGRACE_Rsq0.3_20200109.tar.gzThe summary statistics is in hg38 (imputation with Topmed Rsq>0.3) adjusted by 4PCs. - FinnGen (used in Bellenguez paper):
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240200_FinnGen/R6/finngen_R6_G6_AD_WIDE.gz(original data is already in hg38) - FinnGen (most recent version until 20240222):
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240200_FinnGen/R10/. All in hg38.
- EADB-core (EADB-TOPMed):
- another related meta-analysis result of GR@ACE, IGAP and UKB. This one is publicly available in de Rojas 2021, Nature Communications.
- original:
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240300_Bellenguez/GRACE/meta-analysis(GRCh37) - liftover to hg38:
/mnt/vast/hpc/csg/data_public/GWAS_sumstats/20240300_Bellenguez/GRACE/meta-analysis/Sumstats_SPIGAPUK2_20190625.hg38.txt
- original:
- meta-analysis results:
Path to SuSiE RSS Fine-mapping Objects#
- Li-San Wang FTP:
/ftp_fgc_xqtl/projects/GWAS_Finemapping_Results/Bellenguez/ - CU:
/mnt/vast/hpc/csg/xqtl_workflow_testing/susie_rss/output/ADGWAS_finemapping_extracted/Bellenguez/ADGWAS_sumstat
Download source#
This data is derived from summary statistics from the Bellenguez et al. Nature Genetics paper.
The cohort-specific data is requested from Rui Dong and got approved in early 2024. The data is uploaded to the cluster in March 2024.
File Schema#
chromosome: chromosome IDposition: hg38 positionref: hg38 reference allelealt: alternative effect allelevariant: variant ID in the formchr${chromosome}_${position}_${ref}_${alt}beta: SNP effect sizese: standard error ofbetapvalue: p-value ofbetaestimatemaf: minor allele frequencyn_cases: number of cases for estimaten_controls: number of controls for estimateoriginal_effect_allele_frequency: allele frequency of the original effect allele
Links to GWAS data analysis notebooks#
- GWAS summary statistics processing: https://github.com/cumc/fungen-xqtl-analysis/blob/main/analysis/Wang_Columbia/GWAS/AD_GWAS_processing.ipynb
Cohorts included in this study#
111,326 clinically diagnosed/proxy AD cases + 677,663 controls
- Stage I: 39,106 clinically diagnosed AD cases + 46,828 proxy-ADD cases + 401,577 controls
- Stage II: 25,392 AD cases + 276,086 controls
cohorts:
- EADB: The European Alzheimer & Dementia Biobank (15 European countries). Also refered as
EADB-TOPMedandEADB-core. 21,101,680 variants in sum.stats. - EADI: European Association of Development Research and Training Institutes. 12,540,914 variants in sum.stats.
- UKBB: UK Biobank. We have the genotype and imputed variants ourselves.
- GR@ACE: the Genome Research at Fundació ACE. 61,744,410 variants in sum.stats.
- GERAD/PERADES
- DemGene
- Bonn
- the Rotterdam study
- the CCHS study
- NxC
- FinnGen:
- R6 includes 147,061 females and 113,344 males, and the one that Bellenguez paper used should be
R6/AD_WIDE(N=7,329 cases and N=252,879 controls). - R10 is the latest version (until 20240222), including 230,310 females and 181,871 males.
- R6 includes 147,061 females and 113,344 males, and the one that Bellenguez paper used should be
Supplementary Table 1: Demographic descriptions of the different meta-analyzed GWAS, including a description of EADB per country
| AD or proxy-ADD cases | Controls | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| N | % females | Age | Age at onset | APOE e4 allele frequency | N | % females | Age | APOE e4 allele frequency | ||
| DISCOVERY | ||||||||||
| EADB-TOPMed | 20,301 | 61.7 | 72.0±10.4 | 71.1±10.5 | 32.6 | 21,839 | 57.3 | 67.0±14.3 | 13.2 | |
| Belgium | 1,230 | 64.6 | 78.7±5.9 | 78.3±5.9 | 31.6 | 1,474 | 61.8 | 70.1±8.4 | 13.6 | |
| Bulgaria | 164 | 54.9 | 65.1±8.6 | 65.1±8.6 | 22.9 | - | - | - | - | |
| Switzerland | 182 | 64.3 | 76.0±6.5 | 76.9±6.0 | 19.2 | 388 | 55.9 | 74.8±4.0 | 10.1 | |
| Czech Republic | 183 | 60.7 | 75.8±7.8 | - | 31.7 | 61 | 65.6 | 66.9±7.2 | 10.7 | |
| Denmark | 403 | 57.1 | 79.6±7.8 | 79.6±7.8 | 33.7 | 654 | 54.4 | 73.1±8.5 | 15.4 | |
| Spain | 3,273 | 67.0 | 75.3±9.0 | 75.2±9.0 | 27.2 | 1,685 | 63.3 | 69.3±12.0 | 10.0 | |
| Finland | 1,151 | 64.0 | 70.9±8.8 | 69.8±8.5 | 42.0 | 1,806 | 51.4 | 71.8±7.1 | 15.9 | |
| France | 1,664 | 60.2 | 67.4±11.9 | 63.2±10.8 | 33.3 | 3,106 | 63.8 | 44.9±15.4 | 11.5 | |
| Germany | 1,628 | 60.3 | 74.8±9.4 | 74.6±9.8 | 33.1 | 2,050 | 56.0 | 74.2±8.0 | 12.3 | |
| Greece | 614 | 63.0 | 73.1±8.0 | 72.9±7.9 | 23.8 | 1,246 | 57.3 | 73.1±5.6 | 9.1 | |
| Italy | 3,271 | 68.1 | 73.7±8.9 | 72.2±8.7 | 25.0 | 1,317 | 56.8 | 72.2±10.5 | 8.6 | |
| The Netherlands | 2,438 | 55.8 | 66.2±10.7 | 65.6±10.5 | 41.9 | 2,389 | 47.5 | 60.1±12.0 | 17.9 | |
| Portugal | 80 | 75.0 | 69.9±9.2 | 69.2±8.9 | 30.0 | 74 | 75.7 | 67.2±6.8 | 17.6 | |
| Sweden | 1,533 | 62.9 | 72.8±11.2 | 72.8±11.2 | 40.7 | 3,089 | 61.8 | 70.6±9.8 | 15.6 | |
| United Kingdom | 2,487 | 51.1 | 68.0±10.7 | 66.4±10.1 | 34.4 | 2,500 | 51.8 | 74.4±7.2 | 12.8 | |
| EADB-HRC | 163 | 54.0 | 71.5±7.9 | 71.5±7.9 | 31.8 | 405 | 48.1 | 77.2±2.1 | 14.1 | |
| EADI | 2,400 | 65.6 | 74.3±10.1 | 73.9±10.2 | 29.4 | 6,338 | 60.3 | 80.0±7.6 | 10.5 | |
| GERAD | 3,030 | 63.2 | 78.1±9.3 | 78.1±9.3 | 35.1 | 7,153 | 52.0 | 50.7±11.7 | 15.4 | |
| Bonn | 635 | 65.5 | 77.8±9.8 | 77.8±9.8 | 30.1 | 1,210 | 54.8 | 69.9±9.3 | 12.6 | |
| RS1 | 1,165 | 72.9 | 83.7±0.2 | 83.7±0.2 | 33.4 | 4,739 | 56.7 | 82.8±0.1 | 12.9 | |
| RS2 | 141 | 59.6 | 82.8±0.6 | 82.8±0.6 | 27.1 | 1,961 | 54.1 | 73.3±0.2 | 14.1 | |
| GR@ACE/DEGESCO | 6,497 | 64.1 | 81.8±8.8 | 81.8±8.8 | 23.0 | 6,785 | 49.1 | 55.9±15.8 | 11.0 | |
| DemGene | 1,693 | 65.5 | 72.2±8.8 | 71.6±8.8 | 39.5 | 5,926 | 47.7 | 68.5±11.1 | 18.2 | |
| CCHS | 365 | 68.5 | 82.7±6.9 | 82.7±6.9 | 31.4 | 6,106 | 54.3 | 58.5±13.7 | 15.8 | |
| NxC | 269 | 72.4 | 78.7±6.9 | 78.7±6.9 | 26.0 | 675 | 44.4 | 51.9±8.9 | 10.0 | |
| UKBB-P | 49,275 | 57.3 | 59.3±6.7 | - | 22.6 | 338,440 | 56.0 | 55.8±8.2 | 14.0 | |
| REPLICATION | ||||||||||
| ADGC | 17,141 | 57.3 | 78.6±8.1 | 73.4±8.0 | 37.7 | 17,627 | 58.8 | 75.8±8.1 | 14.4 | |
| CHARGE | ||||||||||
| CHS | 450 | 66.0 | - | 81.9±5.2 | 34.0 | 1,702 | 60.0 | 81.1±5.0 | 20.0 | |
| FHS | 472 | 68.0 | - | 84.5±7.3 | 18.5 | 3,878 | 54.0 | 74.4±10.8 | 11.0 | |
| FinnGen | 7,329 | 48.8 | 82.2±7.4* | 78.0±7.6 | 31.6 | 252,879 | 56.7 | 59.3±17.4* | 17.8 | |
| *age at death or current age | ||||||||||
| total | 111,326 | 677,663 |