{ "cells": [ { "cell_type": "markdown", "metadata": { "kernel": "SoS" }, "source": [ "# A multivariate EBNM approach for mixture multivariate distribution estimate\n", "\n", "In this notebook, we compute a prior independent of the specific analysis method chosen for the data. This foundational step enables the application of various techniques, such as UDR, ED, TED, and initialization with FLASHier, among others. Essentially, our goal is to establish a mixture model to extract meaningful signals from the data.\n", "\n", "An earlier version of the approach is outlined in Urbut et al 2019. This workflow implements a few improvements including using additional EBMF methods as well as the new `udr` package (latest update: May 2023) to fit the mixture model." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "kernel": "SoS" }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
RevisionAuthorDateMessage
75d03afGao Wang2023-10-11Improve mash analysis codes
c35109bGao Wang2023-10-11Update mash pipeline
7203e2bGao Wang2023-10-10Update container entrypoint to allow for different conventions to specify containers
80ec945Gao Wang2023-10-10clean up mashr codes
3b8db47rfeng20232023-10-09update mash
3fb13c4rfeng20232023-05-30update mash
309e04cGao Wang2022-02-07Rename pipeline folder
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%revisions -s" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS" }, "source": [ "## Overview of approach\n", "\n", "1. Factor analysis;\n", "2. Estimate residual variance;\n", "3. Compute MASH prior;\n", "4. Prior plots\n", "\n", "## Input\n", "formatted association summary statistics \n", "\n", "## Output\n", "1. residual variance\n", "2. MASH prior\n", "3. Prior plots" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS" }, "source": [ "## Methods\n", "\n", "Below is a \"blackbox\" implementation to compute data-driven prior mixture for MASH model -- blackbox in the sense that you can run this pipeline as an executable, without thinking too much about it, if you see your problem fits the context of Urbut 2019. However when reading it as a notebook it is a good source of information to help developing your own `mashr` analysis procedures.\n", "\n", "### [UD](https://stephenslab.github.io/udr/) \n", "\n", "Implement fast statistical algorithms for solving the multivariate normal means problem via empirical Bayes, building on the Extreme Deconvolution method.\n" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS" }, "source": [ "## Minimal working example\n", "\n", "Data-set available [on synapse.org](https://www.synapse.org/#!Synapse:syn52623812).\n", "\n", "**FIXME: this part will be later based on fine-mapping results to pick the top signals. For now, it is fine to run this pipeline. You can also find the output of this step in the `output` folder of the minimal working example on synapse.org (link above) so you can take that and skip this step.**" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "kernel": "Bash", "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO: Running \u001b[32mextract_effects_1\u001b[0m: extract data for MASH from summary stats\n", "INFO: \u001b[32mextract_effects_1\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mextract_effects_1\u001b[0m output: \u001b[32moutput/protocol_example.mashr_input/cache/protocol_example.mashr_input_batch1.rds\u001b[0m\n", "INFO: Running \u001b[32mextract_effects_2\u001b[0m: \n", "INFO: \u001b[32mextract_effects_2\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mextract_effects_2\u001b[0m output: \u001b[32moutput/protocol_example.mashr_input.rds\u001b[0m\n", "INFO: Workflow extract_effects (ID=w3de7d69402b55380) is executed successfully with 2 completed steps.\n" ] } ], "source": [ "sos run pipeline/extract_effects.ipynb extract_effects \\\n", " --name protocol_example.mashr_input \\\n", " --analysis-units <(cat protocol_example.mashr.list | cut -f 2 ) \\\n", " --need-genename TRUE \\\n", " --sum-stat protocol_example.mashr.list" ] }, { "cell_type": "markdown", "metadata": { "kernel": "Bash" }, "source": [ "Mixture with UD method," ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "kernel": "Bash" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO: Running \u001b[32mud\u001b[0m: Latest update: May/2023\n", "INFO: Running \u001b[32mvhat_simple\u001b[0m: V estimate: \"simple\" method (using null z-scores)\n", "INFO: \u001b[32mvhat_simple\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mvhat_simple\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ud_mixture.EZ.V_simple.rds\u001b[0m\n", "INFO: \u001b[32mud\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mud\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ud_mixture.EZ.prior.rds\u001b[0m\n", "INFO: Workflow ud (ID=w9f192fe3274fcffe) is executed successfully with 2 completed steps.\n" ] } ], "source": [ "sos run pipeline/mixture_prior.ipynb ud \\\n", " --output-prefix protocol_example.ud_mixture \\\n", " --data output/protocol_example.mashr_input.rds \\\n", " --cwd output/mashr \\\n", " --container oras://ghcr.io/cumc/stephenslab_apptainer:latest -s force" ] }, { "cell_type": "markdown", "metadata": { "kernel": "Bash" }, "source": [ "Mixture with ED method," ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "kernel": "Bash" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO: Running \u001b[32med_bovy\u001b[0m: \n", "INFO: Running \u001b[32mvhat_simple\u001b[0m: V estimate: \"simple\" method (using null z-scores)\n", "INFO: \u001b[32mvhat_simple\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mvhat_simple\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.EZ.V_simple.rds\u001b[0m\n", "INFO: Running \u001b[32mflash\u001b[0m: Perform FLASH analysis with non-negative factor constraint (time estimate: 20min)\n", "INFO: \u001b[32mflash\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mflash\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.flash.rds\u001b[0m\n", "INFO: Running \u001b[32mflash_nonneg\u001b[0m: Perform FLASH analysis with non-negative factor constraint (time estimate: 20min)\n", "INFO: \u001b[32mflash_nonneg\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mflash_nonneg\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.flash_nonneg.rds\u001b[0m\n", "INFO: Running \u001b[32mpca\u001b[0m: \n", "INFO: \u001b[32mpca\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mpca\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.pca.rds\u001b[0m\n", "INFO: Running \u001b[32mcanonical\u001b[0m: \n", "INFO: \u001b[32mcanonical\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mcanonical\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.canonical.rds\u001b[0m\n", "INFO: \u001b[32med_bovy\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32med_bovy\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.EZ.prior.rds\u001b[0m\n", "INFO: Workflow ed_bovy (ID=w744b5ce9803a7efe) is executed successfully with 6 completed steps.\n" ] } ], "source": [ "sos run pipeline/mixture_prior.ipynb ed_bovy \\\n", " --output-prefix protocol_example.ed_mixture \\\n", " --data output/protocol_example.mashr_input.rds \\\n", " --cwd output/mashr \\\n", " --container oras://ghcr.io/cumc/stephenslab_apptainer:latest" ] }, { "cell_type": "markdown", "metadata": { "kernel": "Bash" }, "source": [ "Make plots," ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "kernel": "Bash" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO: Running \u001b[32mplot_U\u001b[0m: \n", "\u001b[91mERROR\u001b[0m: \u001b[91mplot_U (id=57d9dbce2d7c753d) returns an error.\u001b[0m\n", "\u001b[91mERROR\u001b[0m: \u001b[91m[plot_U]: [0]: Executing script in Singularity returns an error (exitcode=1, stderr=/home/gw/Documents/xQTL/output/mashr/protocol_example.ud_mixture.EZ.prior.stderr, stdout=/home/gw/Documents/xQTL/output/mashr/protocol_example.ud_mixture.EZ.prior.stdout).\n", "The script has been saved to /home/gw/.sos/c42794ff2d041d88//home/gw/.sos/c42794ff2d041d88.To reproduce the error please run:\n", "\u001b[0m\u001b[32msingularity exec /home/gw/.sos/singularity/library/ghcr.io-cumc-stephenslab_apptainer-latest.sif micromamba run -a \"\" -n stephenslab Rscript /home/gw/.sos/c42794ff2d041d88/singularity_run_2327875.R\u001b[0m\u001b[91m\u001b[0m\n" ] }, { "ename": "", "evalue": "1", "output_type": "error", "traceback": [] } ], "source": [ "sos run pipeline/mixture_prior.ipynb plot_U \\\n", " --output-prefix protocol_example.mixture_plots \\\n", " --model-data output/mashr/protocol_example.ud_mixture.EZ.prior.rds \\\n", " --cwd output/mashr \\\n", " --container oras://ghcr.io/cumc/stephenslab_apptainer:latest" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "kernel": "Bash" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO: Running \u001b[32mplot_U\u001b[0m: \n", "INFO: \u001b[32mplot_U\u001b[0m is \u001b[32mcompleted\u001b[0m.\n", "INFO: \u001b[32mplot_U\u001b[0m output: \u001b[32m/home/gw/Documents/xQTL/output/mashr/protocol_example.ed_mixture.EZ.prior.pdf\u001b[0m\n", "INFO: Workflow plot_U (ID=wf81e5b819c0398c1) is executed successfully with 1 completed step.\n" ] } ], "source": [ "sos run pipeline/mixture_prior.ipynb plot_U \\\n", " --output-prefix protocol_example.mixture_plots \\\n", " --model-data output/mashr/protocol_example.ed_mixture.EZ.prior.rds \\\n", " --cwd output/mashr \\\n", " --container oras://ghcr.io/cumc/stephenslab_apptainer:latest" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "kernel": "Bash" }, "outputs": [ { "data": { "text/html": [ "
> output/mashr/protocol_example.ed_mixture.EZ.prior.pdf (24.6 KiB):
" ], "text/plain": [ "\n", "> output/mashr/protocol_example.ed_mixture.EZ.prior.pdf (24.6 KiB):" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7gAAAcICAYAAACsf4x4AAAJJmlDQ1BpY2MAAEiJlZVnUJNZF8fv8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEWQRQEXXJUia0UUC4uCAhZ0gywCyrpxFVFBWXDfGZ33HT+8/5l7z2/+c+bec8/5cAEgiINlwct7YlK6wNvJjhkYFMwE3yiMn5bC8fR0A9/VuxEArcR7ut/P+a4IEZFp/OW4uLxy+SmCdACg7GXWzEpPWeGjy0wPj//CZ1dYsFzgMt9Y4eh/eexLzr8s+pLj681dfhUKABwp+hsO/4b/c++KVDiC9NioyGymT3JUelaYIJKZttIJHpfL9BQkR8UmRH5T8P+V/B2lR2anr0RucsomQWx0TDrzfw41MjA0BF9n8cbrS48hRv9/z2dFX73kegDYcwAg+7564ZUAdO4CQPrRV09tua+UfAA67vAzBJn/eqiVDQ0IgALoQAYoAlWgCXSBETADlsAWOAAX4AF8QRDYAPggBiQCAcgCuWAHKABFYB84CKpALWgATaAVnAad4Dy4Aq6D2+AuGAaPgRBMgpdABN6BBQiCsBAZokEykBKkDulARhAbsoYcIDfIGwqCQqFoKAnKgHKhnVARVApVQXVQE/QLdA66At2EBqGH0Dg0A/0NfYQRmATTYQVYA9aH2TAHdoV94fVwNJwK58D58F64Aq6HT8Id8BX4NjwMC+GX8BwCECLCQJQRXYSNcBEPJBiJQgTIVqQQKUfqkVakG+lD7iFCZBb5gMKgaCgmShdliXJG+aH4qFTUVlQxqgp1AtWB6kXdQ42jRKjPaDJaHq2DtkDz0IHoaHQWugBdjm5Et6OvoYfRk+h3GAyGgWFhzDDOmCBMHGYzphhzGNOGuYwZxExg5rBYrAxWB2uF9cCGYdOxBdhK7EnsJewQdhL7HkfEKeGMcI64YFwSLg9XjmvGXcQN4aZwC3hxvDreAu+Bj8BvwpfgG/Dd+Dv4SfwCQYLAIlgRfAlxhB2ECkIr4RphjPCGSCSqEM2JXsRY4nZiBfEU8QZxnPiBRCVpk7ikEFIGaS/pOOky6SHpDZlM1iDbkoPJ6eS95CbyVfJT8nsxmpieGE8sQmybWLVYh9iQ2CsKnqJO4VA2UHIo5ZQzlDuUWXG8uIY4VzxMfKt4tfg58VHxOQmahKGEh0SiRLFEs8RNiWkqlqpBdaBGUPOpx6hXqRM0hKZK49L4tJ20Bto12iQdQ2fRefQ4ehH9Z/oAXSRJlTSW9JfMlqyWvCApZCAMDQaPkcAoYZxmjDA+SilIcaQipfZItUoNSc1Ly0nbSkdKF0q3SQ9Lf5RhyjjIxMvsl+mUeSKLktWW9ZLNkj0ie012Vo4uZynHlyuUOy33SB6W15b3lt8sf0y+X35OQVHBSSFFoVLhqsKsIkPRVjFOsUzxouKMEk3JWilWqUzpktILpiSTw0xgVjB7mSJleWVn5QzlOuUB5QUVloqfSp5Km8oTVYIqWzVKtUy1R1WkpqTmrpar1qL2SB2vzlaPUT+k3qc+r8HSCNDYrdGpMc2SZvFYOawW1pgmWdNGM1WzXvO+FkaLrRWvdVjrrjasbaIdo12tfUcH1jHVidU5rDO4Cr3KfFXSqvpVo7okXY5upm6L7rgeQ89NL0+vU++Vvpp+sP5+/T79zwYmBgkGDQaPDamGLoZ5ht2GfxtpG/GNqo3uryavdly9bXXX6tfGOsaRxkeMH5jQTNxNdpv0mHwyNTMVmLaazpipmYWa1ZiNsulsT3Yx+4Y52tzOfJv5efMPFqYW6RanLf6y1LWMt2y2nF7DWhO5pmHNhJWKVZhVnZXQmmkdan3UWmijbBNmU2/zzFbVNsK20XaKo8WJ45zkvLIzsBPYtdvNcy24W7iX7RF7J/tC+wEHqoOfQ5XDU0cVx2jHFkeRk4nTZqfLzmhnV+f9zqM8BR6f18QTuZi5bHHpdSW5+rhWuT5z03YTuHW7w+4u7gfcx9aqr01a2+kBPHgeBzyeeLI8Uz1/9cJ4eXpVez33NvTO9e7zofls9Gn2eedr51vi+9hP0y/Dr8ef4h/i3+Q/H2AfUBogDNQP3BJ4O0g2KDaoKxgb7B/cGDy3zmHdwXWTISYhBSEj61nrs9ff3CC7IWHDhY2UjWEbz4SiQwNCm0MXwzzC6sPmwnnhNeEiPpd/iP8ywjaiLGIm0iqyNHIqyiqqNGo62ir6QPRMjE1MecxsLDe2KvZ1nHNcbdx8vEf88filhICEtkRcYmjiuSRqUnxSb7JicnbyYIpOSkGKMNUi9WCqSOAqaEyD0tandaXTlz/F/gzNjF0Z45nWmdWZ77P8s85kS2QnZfdv0t60Z9NUjmPOT5tRm/mbe3KVc3fkjm/hbKnbCm0N39qzTXVb/rbJ7U7bT+wg7Ijf8VueQV5p3tudATu78xXyt+dP7HLa1VIgViAoGN1tubv2B9QPsT8M7Fm9p3LP58KIwltFBkXlRYvF/OJbPxr+WPHj0t6ovQMlpiVH9mH2Je0b2W+z/0SpRGlO6cQB9wMdZcyywrK3BzcevFluXF57iHAo45Cwwq2iq1Ktcl/lYlVM1XC1XXVbjXzNnpr5wxGHh47YHmmtVagtqv14NPbogzqnuo56jfryY5hjmceeN/g39P3E/qmpUbaxqPHT8aTjwhPeJ3qbzJqamuWbS1rgloyWmZMhJ+/+bP9zV6tua10bo63oFDiVcerFL6G/jJx2Pd1zhn2m9az62Zp2WnthB9SxqUPUGdMp7ArqGjzncq6n27K7/Ve9X4+fVz5ffUHyQslFwsX8i0uXci7NXU65PHsl+spEz8aex1cDr97v9eoduOZ67cZ1x+tX+zh9l25Y3Th/0+LmuVvsW523TW939Jv0t/9m8lv7gOlAxx2zO113ze92D64ZvDhkM3Tlnv296/d5928Prx0eHPEbeTAaMip8EPFg+mHCw9ePMh8tPN4+hh4rfCL+pPyp/NP637V+bxOaCi+M24/3P/N59niCP/Hyj7Q/Fifzn5Ofl08pTTVNG02fn3Gcufti3YvJlykvF2YL/pT4s+aV5quzf9n+1S8KFE2+Frxe+rv4jcyb42+N3/bMec49fZf4bmG+8L3M+xMf2B/6PgZ8nFrIWsQuVnzS+tT92fXz2FLi0tI/QiyQvpNzTVQAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAAAlgAAAJYAcUb+8AAAgABJREFUeNrs/V2MJel5J/g9z8msr65usrM7KVKiyG5WixqSEqWhsiVyRuP5kLMHg8UaWMNbbXosGbZnXW3AwPqy6mZ9Y2NRNYDnYm0sXHWzMGYA2l2+8NqGsUYWbO/AGkiaKo0kjr4odZEzo89VdqUostlV1ZXn9UXGqTqdfU7myZNxIuKc+P2AQFWej4j3iZOZ7z/feCMiSykBAAAAAAAAAAAAAABtG7TdAAAAAAAAAAAAAAAAiDDBHQAAAAAAAAAAAACAjjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATlhvuwEAANBnmbkdERsRcSki7kXE/VLK/bbbBQCwrOSr2WTmpYi4VEq503ZbAAAAAAAAxrmCe00y8+3MLNWydcxrL4+99moX1r8KMvNKZu5UdT+o9tl2zdu4Wa1/e8rzl6rXvDPWjp3MvHJEm6/PutRVd2ZuVOvcGfteuVs9tnHMew/XONP7AKBuh/qxWZbtsfeWo/r0E7ThyqFtzNQfVn3xzcwsEbETEW9HxPXq/+9U/eu0vDFz2zNze/T6Bj8aiIjF5PNTZt+7J3zfibL9hO2dKGvPuz2AOslX3cxXY59LLeNc1b7aiYh3ImJn2pjTgmsa7cedprfdVW1npzrGKSes8+Zx37tNjqeeZkwUYJrT9Gl19/FdqYtn6u7fT7q+qp89rr+c1ufONZ5SV93V+47NHFPaaTwFoEeWIbd0oY1daEONtTie8uH90frxuAXkzpk+z5xjDts82zOmBC0qpVhqWOLgqlAPIqJExM6Mr3t7wvPXq+XSIta/qkscHLQsU5YrNW3j8tg6tyc8f+WINkz7vHeOec+Hljrqjoitse+RScuDiNia8t6jarwbERttfy9YLBaLZbWWadmoeu5E/eh4/31Un37C9h3ui6/O8J6NQ33x3bE63z703JUJ75+57RGxPS1HWCwL/tmtPZ8vKPtOe9+Js/2M25uYtefdnsViscyzyFfLl6/GPpdT7dux9d0c65d26ho7O2EbRvtxZ8JzU79HV3XpQnY67TjlhPVdPu5na54MNG87TzMmarFYLEctR/VpM7y31j5+zvZPOy6prz79vq21f59zXOTqDP3lpM94rvGUuuoeyxHXj3ndce00nmKxWCw9WE6Tx/rUxjbasIjc6HjKR/ZH62NK1XsWlTvfPqKdJ57DNs/2jClZLO0uruBek1LKXkS8VX25ndOvnH4zDg66jb9+3NVqubSg9a+c6uz9y6OaSykZES9FxK3RPsljrno/wzYuxcG+Per50VUEbkfEa2PtuFY9fnnClQZuR8SNY5Y7Y6+to+634+B75H5EvFlKyeq9b1aPbVSvOVzj9tg+uBERL1Xve6Nqw9bYPgCAukzMRofcGPVnxyx3ZtzmTKqzsS9XX96v/r08w1tHffFeRLxeSnm9lHKtWt6MiNfiw/35pRnWCZ2xiHw+zzqrn52dOPh5uxMHP2+j990Ye9/2hPfNk+0j5sjap9wewDzkK/lqVP9bpZQ3Sim3TrW2+s3yPboyupKd4hTjlBO2f+RY6thrmhxPnWtMFGAG9+Pgd8/t066oJdP63aPq6lVfPY+6+/dTrG90Nck7Mb3fPHz8ca7xlLrqPpQRjjPq3+9FxBtj/ftbVRuMpwD0w7LnsVVWa250POUj+6MrY0oRc+TOylx57hRz2ObZnjElaFPbM+xXbYmDX46js3MOX+1g/Ko1l6e8/7ir2pxq/au2xIev0HXUlYdOdYbe2HoeTPp84tmZaDtT3j/63N6Zs74HMXZm2bx1x4fPXpt0pbZL09YbB7etnni1hBi7elm4irvFYrFYalyOykZj/d31Otd7gnVcGcsHl4/qY8feszFrXhur7+a8bQ9XcLc0/zNbez4/RfYdXZ327pT1jjL6zqHH58r282btRf0tYbFYLNMW+Wr58lXUfwX3Llwt9qirwp76e2lZli5lpxOs90PjlMd8jz2I6b9vGhtPPc2YqMVisSxy6UiffOJ+t0999Zz7tNa++DTrG3tu5v7tFOMpp2nndrXew3dquX5EO8ePTU7q30dZw3iKxWKxWFpfor9XcK81Nzqe8qFaOzWmNGfunDvPxRxz2ObZnjEli6X9xRXc63cjnp2d8/QqNdUVqEZf3yqlzHvm4KLXv2wuV/vifpl8tanRlQQuV/voxKozs7bj4Gy0aesYXaXg3pTnR1cNOulZiaMr8r9VDq7if9q6R9u/XUq5f/hN1WOj752nZ9xVZ99dioOz1W5MeN+d6n135qgRAJbVlerf21X2GvXVR11l9Gn/OkNeG+WKTvetmbmVmZerZaarAGTmdmZeqf496ZUDTry9U7RznvdsVHWdqH0rZBH5fN51jjL6tKvSjt63fehKvvNm+7my9im2B7CKep2vMvPSeE464XvnykhT1jWeZ7ZP2hZOpEvZ6TjTxik/ZMax1Ihmx1PnzWkAtZi3jz9N/15nNuDE6u6LT7O+0df3Y3bzjqecpp3bcTCh6CS5c/TaO5P69zCeArASqkwz11jJlPWNj3dsHHru0kmP7xweQ6mh1kbzW1PHzmrkeMozXRtTOk3uPFGeO8Uctnm2Z0wJWmaCe82qQfO3qi+3M/Nq9f/r8ex2FdcOvy8zdzKzjD20k5nlcACad/3TZObb1XYm3c7jevVcycm3mXuneu7qbFtbiFHnMPGW2OXDt8o+cUdSdYpX4/j9eq9qQ2235s7My3EQHm5POEA7b92j/x8VKA4f+Il4diD5zrQDWKWUN8vBba3vBQCc0qzZqMX2XYpn/eroD/xRf315xnUcV8utOLiN2szZroG6t6vPYacatNuJiLtxcNu1tyPi7ui5Ke+/npkP4uAs/pvVv6P3bNW1vRraeTkz35nwnneO+tyqTD2q70PbGeXqGffzMmf0ReTzedc5yrP3p7xvb2yd4/ty3mw/b9au/W8JgEnkq6fr7VS+qtq9kZk34+DKQ09zUtWvbx3z3plzyyhHxLN+b2c8c4y1YzzP7FSve5CZVyZsf5RNdo5o40w5aN7vUdlp8es8Zpxy/HWzjqVGNDueOm9OAzjW+BjEhOfm6uNPOi4xzzjIcf3upLqOek/V5lK1e1pdo3757WP26TL37RH198WnWd/o65Mcu5t3POU07Rzl9NEybXL9uFHfPW3C1lwXPgOgG6p8McpD4znqI+MT0/LYoYy0Va1vfLzjnWri/EaVT8afn3b8aTz/XDn0nqnjJ8fUOtcxqVPu30uZeTcWdOxsgeOQtY4lLHnu7NqY0jy5c948N+8ctnm2Z0wJWmaC+wJUv9BHZwhdrcLLKMBMu8LNqBM+/PVeTeufZtIAREx47HAYuRRjZyk1tGsnGbXhqJpHNZ706hbjV8U/cr+WUq5VHeO0EHXcWYSTtn29quutCS+Zt+5rcfzA0KS2ztJhA0CdZs5GLRn94Xx/7A/jp33vtIOUVVYY1XDzqIGcUsr9Usqdjp48thEHA3ZbcZBLb8SzfDG6pfCHVINDV6v33ht73171np2cfnD3xNs7RTuvxMGg3KVD7bxfPbZTTZyZVl/EQT6+EQffE9vV+k5imTP6IvL5wjL/hG2cJtvPlbXr/lsC4AjyVXfz1U48G9sb5Y/bUWWPmHJwZI7ccj8+/JmPvgdG4z1vj7Xj9qH1bVT7d6aTDeY07/eo7LTAdc4wTjn+upnGUiMaH0+dd0wU4LRO3MfPOy5ROck4yDz97tT3jN1959IR4zujdh/X7y5z3x5Rf/8+1/omTMi7Uk3Uup6ZV/PDV18/ba2nqnssp985lO+P8vRKmVP+Bhj97LmgAMCSqbLEKCvdj2e55l7MNz4xyl578dGxjuvVc5fjIDfNevzpcjz7G/hWfHT8ZKZJz6fMfvMaZcZLsbhjZwsZh1zA8ZRlzp2dGVM6Re6cN8/NO4dtnu0ZU4K2lVIsC1jiIBDcjYgytlyf4X2j124vYv0T1nNp7P2XDq1/fN07h953pXr8nZb38ztVO64c8ZqdefZPHIS2D71v1s+neu1WPAt/M79v2rabqDsOQviorVsT1nU5nk3SGr3uQRwE90sn2b8Wi8ViscyyHNWHjvVPN6v+6ahlY9b1ztiudyb1s1W/eGT/eygblGpdN6t+duME++TqDHVfHb2+ps9j+1C7D+/Xids79L4rh54bz7U7C9jeSd63MfYZXp1Q/82x/LMx9vjWtO+psdw88+ewzBl9ETl13nWOve/qlPeM78/rx7Rh7mw/to6JWXtR27NYLJZpi3x15D5pI1+Nt/3yoee2xur/0L6dN7cc+py3D21raj8Vz8aC3p7S/p3j9u+hx7anve+k30uy02LXGceMUx71ujk+y4WNpx7z3plzmsVisRxepvVp8/TxpxiXmGscpHpu2njGifvqsfZdn/Ce0e/aBzPs06Xt26t21N0Xzzsusj32PfHg0L4rR3xWc42n1Fn3CfLH6DN/UL1nu3rs7bHH9e0Wi8WyZMtYpnh7wnMfGZ84Io+NZ6TD4xmXDvWJW4eeH/VF7xx6fGfsPXcn5K6bMTnHfKSN82a/U+zX7WPaXuuxs+q5hR/fOOVYwtLmzroz52nWOW/uPLQvZ85zcYo5bHXnxzCmZLEs/vdd2w1Y5eVQOJipUztJZzvP+qesZzSh6MqEdT8NX4feM3WQquF9fOz+OmmHXb1n1AHdnefziY8eWH0wR4CaGlIXUXcVViceNB7b3s1DNb1z6GudtcVisVhqXY7q8w4NIh23bM+63hnaND7559Kh50Z95TvHrOPyoX50fLlbZYmtY/bJiZaaPo/x/Hn5qPZN2S9vT3nP+ADSVg3bm/d9o8G7nSnv2Zg0uDNW380p79s56eewrBl9QTl1rnWO/zxOytWHsu1Rk/LmzvaHvreOnaBZ1/YsFovlqEW+OnKftJGvJk7sH3v+6qR9O29uOfQ5j69vu3r8+hH7d9IBvdYnuFfvkZ0WsM6YYZzy0PfHXGOph76XFjKeesR7Z85pFovFMmmJ6ROqTtzHn2JcYq5xkPHHo54J7qP+4J0J7zlRv7usfftR++fQa04ywX3ecZHxiy68E88m8Fw9lPuvT9mPJxpPqTmDzHzi2oQMMZ4lXJzLYrFYlnAZ6y8uT3juUvW7f1JGOGqC+8YR27k54bmn753ynhLTJ9B+JAfG5Anuc4/tzLlfx/fH9pTX1HbsbHx9JxnjOWFNdRy/WcrcWXfmPM06582dR3yOR+a5sefnmsNWV34MY0oWSyPLerBI47ezuJSZ22X6bVLaXP+dODiQOH5LkvHbZ9yL6vYcY+vfHnvvsTLzesx+y5OIiGulpdtFj91Ody+OuO3uMUa3fI6ormoWB7chenOGuka3KrpVjrmVb031bsWzcDHa7rUpL78SB98P10bfC9WtZN6Og893JzNfa6LdADDmfhx/C7I6+6bRLfbulVIOb/dOHPSXlzJza1q/Xw5u23y76ofHrwga8SyXXc3MW6WUaXlklro34mQZbGZVDSfdZ7enrOt+Zt6r2no5JtzC7YTbm/d9o89gWjv3MvPpZzzr+6rHt+NkZPTTuxYH30+XIuJuZt6Kg/12KZ5d1WEvDn5OjvodMXe2P2HWPvX2AGokX01XW76q2jrKFNNuc3srJt8Oe97cElNefyeOzhALyZQ1kp0W49hxyprGUiMaHk+dM6cBzOQUffyp+/d5x0/qUEq5nZl7MTm3HTk2NIG+/fRG3yP3IuKNsT7yTkTcyMybcfC9NMrIoxxc13jKwlWf4SgH3IlnY4rj7X9jyT43AJ65mpl3xv/Oq/qrk/7tdu+YvxXn6c9uTxjDevpcHPRPx+WMWsd2TmDvhHPL2mrnLOo4niJ3nt68ufO0ee7Ec9jqyI/GlKBZJrgvSGaOzkSKqDq7OOhEX69j8m/N678Tz27BPLI19tyleHZLlztjA3MnCT1bcbJJPRun3Uen8Ha1/bkDQynlVlSDltVBnutx0LEeOQG86mivxEGAvrHIIqt2XY1n30d7Vc23jnjbXnw4jIwmpL0R1ZUc4qDTP2odAFC32w3/0Tg6ILdX/RE8zZU4ZoJHlTXuRdXvVxlvdCu0jYi4kpkxZRLWW8dlsWp9OwvYByc9qXKU7Y7KVqMBpDq2N+/7nk6CO+KzHQ3SbE14bFp9x02Um9Z2Gf0UqkHVN+Ig34+u6jLuVvX4dhzxGc2T7efM2nNvD2AB5Kspas5Xo771/rSDolV/Nhr7GzdvbjlWNT41yhqjCf0nPVmvabJTzU4wTnnqsdSI5sZTT5PTAE5g3j7+tP17nRfZmtftOPi9/PQCBpl5udon90840UjffgpVnr92xPNvVdl21Jdeqx6vZTxl0arvq6tx0Je/eehzvzY2kcp4CsDyuRUH/cxWRDzIzNtRTTSe86Kfi+gDjuoDJ+WYSRY2tnOMk/7t3lY7j1XT8RS585TmzZ015LkTzWE77faMKUE7THBfgOoX2tvVl7fi4BfzO/FsEOA0V7Kpff2llDtjV1S4VA22bUc18FYNsEU868BPdCZatY036t7PY20YBdtTD9yNHfS8HxH3qq/Hja5IsJWZT/ffMbXvZeboagfHTQC/Uv17+5igdaq6q8A1Gpjaq9pz44ht3q9eO/EqSFWNo0HL7TDBHYAVVf3hOxqkGb8q6CSXY45cFgeDIzfi2SDMlcy8ccSVIJbGjDV04eqgV+Z5U50HypY4o9eaz0+7zurA+WuZObpyyFYcDN7eqfbxiSYozpLt58jap9oewLKTryLidFfLnyu3TFKNg026otRePOuPO0l2Wsg6jx2nXMRYavWaRYyn1prTAGY0bx9fW//egtHVOy/Hs0kuo5MZZ/57don79lEb6uzfF5EXxtd9JQ7lvznHUxbZzklGE+xuTcoXEyZSLfTCYgDUp7orzBvxbNLx5WqJKh+s2t9yy5L9Ot3OeY+nLHHu7PKY0rR1H86d8+a5eeewzZ0fjSlBe0xwX4yb8ey2bNeqX5xvxcEvuivVLXROc4vARaz/TlS3lcvM+2OPjcJjxIdv6/z0+Y7YmOG5kxy0vBRHX43r6VmJmfnSaJ9MO0AzdiWOUUc4zSgQzjrId+K6D11p7E4cXJ3suH0zCgdHGXXaS3UmIQCc0CgP3Y/pt1TeiOoKoZl5eTyXjd2C7tZReW1sEGaUDVbiBLLM3JjhD/0uTDS7FsdfwaKJAYtlzuh15/NTrfOIqyd86Or71cnEc2f7k2bt024PYEXIV6f7/V5LbqlONBhdUONOPLtF7+hg3nEnH3SB7FTvOk8yTjnzWGpEZM0ZaKZ2zjkmCnBa8/bxXRmXOLGqzx1NENqKg75mNMHdscuPPneSvmgReeHI76NZx1MaaOdRbTjqM78dzyZHmuAOsETGLlgwumvI6ArYl+LZ7/bX225nTZYl+7XazgUfT1nm3NnFMaVJJn1vzJvn5p3DNtf2jClBu0xwr1l1MGg0UPPWaAJP1eHdrp67WU1CP3HHvsD1P+2s41kndO/Q89uHDmbNPBA1dob/rG7N2BmMgsnEK32OB5yY7TY7oytSTTO6NfO9+HBnOOrI8gQ1Hm7rSW7ROFfdh6/+P+V23JOcpGPuQrAGgEV5esWpUsrUgyJjZ3dvx4cz02gA7l4ck6WqQZjRl6tyAtlRZ/yPskubWWJ0a/C5bnOZmdtT3jfvAe1lzOh15/NFrTOqgfHDB2TnzvZzZu1a/pYAWHJ9zlej3HPpmBMBJ00sP1VumeDpJOETjBcda8IVvRdJdqppnScYp5xnLDWi4fHUU4yJAsxr3j6+7v69LaOrJV6OZ33y7TkmgSxj3z5qY539+7zHBLcjZrt7SpzgOOCU8ZRF1A0AozsDPz3hauwE/a0jjsk04ahxpVn7u2XJfl1p5yKPpyxj7uzMmNKicmdN6zjVcWdjStA+E9xrVP1Su1l9eXvCVaPeioOOYPS6Nzu0/lEnMzogOP5YxLNO7Eq1/nsnnEA/CgInac8sHdLTM6emDBKODpLOMml8dMu9qbeGycxS/ffaeMdcXY3iI1cRO2QUVqbVdZIQNG/dV+Pg87tzwk733th6r015zeVDrwWAlTI2eSLi+P561FdfjoOMNjK6tdvlzDzytmXVwaLx9y2z0YmYlyfVUuXcE9/SbwFGg3QT21m19W71mrfGrmI1qm97yvsmDgTNYBkzeq35/DTrrK7oezWmDziNJvLdGw0UVleonTfbnzhrn3J7AEuv7/mqlHJv1A/ElNsmVwfAJpk3t0xz3LjUvHmm6Qnuo23KTqdb50zjlPOOpdaYgWYdT513TBRgLqfo4+vu39tyJw762+14NqFknuy1jH17RP39+7zrezsO+tqjvlc+cmxvnvGUBdV9nNGVO4+aLDb6fB27BFgS1djNO9WXLx3uT6qLf47Ggo66qNKiXc7Ma1Oyx6z9z7Jkv060c8HHU5Yxd3ZpTGmu3Bnz57l557DNsz1jStCyQdsNWDFvx8Evtb348IG2iDi4SlQ8u13G5SMOUDW+/moA4l61/u2obj889pJRx3350NezuhYHBztmXWbqXKsOc9TOq+PPVROlRo99JNhk5pXMvD7H5zDJaP1Xq+0e3tb1OOgg92L6AZeZJ4ifou6nHXFmbh+zXBrb3q1qe5cy8+rh9lSPHVcfACy7p331DGfNj/rDjUNZ41Yc9JeXImJnUm6I+MjZ4HdqOujTplF2vFLdnvqw0Umc91u++sPoc7syKSNWmWcrPpp5ptZXfT1X3lzGjL6IfH6Kdc76uRwebJs328+VtU+xPYBVIF8964euT+ivxvu5afvjpLllmtH+vzRhXVtHtGO0H7cO7/uqv6tj3G0mstPp1zmmiQtZNDmeOm9OAziNefr4uvv3VlSTjfbi2Z125mrvMvbtVbtr7d9Psb55+9q5xlNqyiAnMVrPR37GRvsynp2k2dWTQQA4pOrrR5NqJ+Wh8StIt3018esT2nc1Zj8Ze1myX5fauZDjKcuYOzs2pjTv5zJXnjvFHLZ5tmdMCdpWSrHUsMTBL/FSLZePee1O9boHEXHp0HMPqueuR3U19jrXf8z7ro9t4+aE58vYstX2Ph9r1/Z4u6uvL0fE3eqxd0b7ccp+2jnBtkbb2T70+KWxz+6dal9erv7dGXvflSnr3Rp7zcai6j70GR63XD/03stjz+1U35NXZ6nPYrFYLJZ5l2nZqHpuZ1KfNeN6T9Inju6Qc6L+ruqLS0S8fejxK4fW/3ZV32h5e6zuB4dz17Q8MqUNT/NCTZ/HaH07x+3bCY+PZ4abVba4OpZdJmWsubZ3ynZeP9TOK9Vy86jvgUMZfDwLPhivcY59vnQZfRH5vIZ1jj6XK2Ofy7R9Ole2nzdrn/ZvCYvFYjnpIl91Ll9tHGrb4RxRxvq7w1nptLlle8K6Rm0Y3XJ51I7xvmp8zPLSoXaOrtZ69agcdFReO+p7dIb9KTudYp3Ve088TjnD74XtCc81Np46b06zWCyWWZZpfdq8ffw8/Xucbhxk2nHJU/XVh9p78xT7d+n69kP7r5b+fZ71HfM9ON7XXj6iHTOPp5ym7iM+9+tHvGZjbL3j7Tx87FLfbrFYLEu2TMhDV+OjOWpn7PXT8tiRGSmOGAeLKeM/h/rIEtPnzlyfpS3zZL9T7Nc2jp3NPcYzpX0LO56yjLmz7sw57zrnzZ2nyXMxxxy2ebZ36HM3pmSxtPG7ru0GrMJyqAN9+4SvPxxebh765bdd5/qPed9WHB08Rr/M32l7n09o25WxmseXu9OCRdQ4wX1s/70zpRN7cFSAimcnMJxo356k7ur74lQd7xHbO7I+i8VisVjmXSZlo7HnmpyANT5pataT0a5Pe0+1zp1jtrszKccclUcmvLZLE9xHV02dlpUu17W907Rzwmc3U+ap6tuZ8jmOBlkezLHPlzKjLyKfz7nOaZ/LcQdJT5TtT5u1T/O3hMVisZx0ka+6la+qdW7Fh0/6G1+ujNW9fcw+mTW3TJrgfmSfGR8ebzz83itT3nc3xk5kmLIfJx1Im/o9OuO+lJ3mXGf1vrnGKY/5vbA95fmFj6eeNqdZLBbLccsxfdpcffxJ+/c43XjNxH73tH11fHjCyeVT7N+l7NurttXav8+5vq0jMt6DaZ/Ncdmw7ronrOPYCe4ztPOBft1isViWd4npx5NG4zvjF2xoY4L79QmZqMywvkl9/InHdubcp20cO5t7jOeINi7keMqy5s66M+cp1rmI3Hlknos55rCdZHthTMli6cSS1Q8kHVLdKmN0y45b5fhbNBNPb4dyJZ7tu3vl4DaITbfjcjy7ZUnEwW1RbpdS9lah7mp7l+PZLasXWh8ArHI2qm5/NrqC6cj9iLizSnUeU3Mns0R1G7nLJ21nZo6udhpR5bLqsZ04+FzfaLu2piwip867zur7bnTryL04+CyP/RlrIds3uj2gv+SrbjrUD5ykv5ort0xZ13iW+VAbDj33oe+bCW04Vb+/yt+jR9TcmezUQu0yELDS5unj6+zfZ2jfifvd495T1fx2RNwvpby2kB27BOrui2saF5n3fSfJp00fu1yK8UYATmbC7/e9OBjfuddim3aqNt0opVyb0MfONYbRZPY7Zf0nbueixniMJXxoX3RmTOmUufPEeW7eOWzyIywPE9wBAABOITOvxMHAyZ1Syp0Jz1+Ngytb3CqlvNV2ewEAAAAWKTNvxsGEmBullGtttwcAoA6HJ7i33R4AWHWDthsAAACw5DYi4mq1fMjYFQ4iIu6cZKUAAAAAy6a6sudoLORW2+0BAAAAlpMJ7gAA0BOZeT0zy5zLdtvt77BbcXBrzO3M3MnMK5m5nZnXI+JuPLu6+8JuxQwAtEO+AgA4UOWinYjYqR66U0q533a7AABWwSqMQa1CDQA0a73tBgAAAI25FfNfRfxe243vqlLKXma+ERHX4+DWlIcH2W5FhFtVAsBqkq8AAA5sxbMxkfsR8VbbDQIAWCGrMAa1CjUA0KAspbTdBgAAgJWQmVtxcMX2rTgYpLtXStlru10AAAAAi5SZlyLickTcdxc7AGAVZeaVeHbX3nknagMAMzLBHQAAAAAAAAAAAACAThi03QAAAAAAAAAAAAAAAIgwwR0AAAAAAAAAAAAAgI4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE4wwR0AAAAAAAAAAAAAgE5Yb7sB1Gd3d/d6RGxFxL3Nzc1rbbdHrWqdo9YrEXE5ImJzc/ONttujVrXOUetWRFyvvry2ubl5r+02qRVOp2f9sFpXUM/6YbWuoD5ljj7VSr/1rB9W6wrqWT+s1hXUp8zRp1rpt571w2pdQT3rh9W6gvqUOfpUK/3Ws35YrSuoZ/2wWldQnzJHn2qdhwnuq2UrIrbbboRa1XoKl9S6kvpU68ZYrRttN0atUIs+9cNqXU196ofVupr6lDn6VCv91qd+WK2rqU/9sFpXU58yR59qpd/61A+rdTX1qR9W62rqU+boU630W5/6YbWupj71w2pdTX3KHH2q9cQGbTcAAAAAAAAAAAAAAAAiTHAHAAAAAAAAAAAAAKAjTHAHAAAAAAAAAAAAAKAT1ttuwAq7VC2NOXfu3EvD4TAGg8FLEbHd4KY/FRHfr5ZVr/X5avkztdbvwoULrzx58mT0pVoX51M9qvXzEfEHTW3shRde+MrDhw8jIuL8+fNfUevC7EXEvYa3STfIV6tZq3y1QPJVY+SrBZGvGiNf9Zd8tZq1ylcLJF81Rr5aEPmqMfJVf8lXq1mrfLVA8lVj5KsFka8aI1/1l3y1mrXKVwskXzVGvloQ+aoxnc9XWUppuw0raf/fvfOND779u18v7zWWOVpz7qt/Mwbn34sYPmq7KYt35qXYP7sRw/J+2y1ZuEGej8GDP4/4qz9uuymL9/ynIl/ejBh+t+2WNGPw0pPY3+3HCU5nPjOMx/+mH3crGf7wsHz7V3tRa77wiT+KH/3rn2m7HTTv8bd+7xs/+OZvfX3/r1b/9/XH//2/H+sf+yCiPG67KYu39mLE2tl+9MODF+LRv/438fj+77fdkoU785lLcf4nPhPx+L9puynNuPjqk3jyF/3IV2dfHcbj7/Qic8SZzw7jB9/qR63rH/+jOP85+aqHepWv/jv/INZfiojyQdtNWbzBCxG5FhHfa7slDXg+fvBr34qHv/vbbTdk4c6+9vm4+JVXIx42dsysVfnSF55E/mU/8lX88DDiT/uROeJTw3jyR/2odXDxj2LwKfmqj8pffSP2H3y9F2M665+Mkj+IiCenXlX3XYx8//v9GOc4sxlx5nzE/oO2W7J4ay9GrJ2LKKv/91BERFn7xJOI7/YiX2V8cjgsf96LzDHITw6H5b/pSa0X/ijiJfmqj3qXr96PfuSr5yJiEA3O5VdrQ7XmcL8fx30jIgYv92j+1SvDiH7kqxi+PIzv/14/aj3z8T+KC691Ol/14wesJY/u/tfxwe/8etvNWLizX/5ylPLtiEd9mAj90zE8cz4+GP5J2y1ZuDODH4rBX/1xlG/9P9tuysLl5/5uxMaZKE9+r+2mNFPv+pf3ywe/04vf/7m2Wcqjf912M5qp9clzZfhb/2XbzWjE4Gf/4ZNsuxG05ns7/1W896v/ou1mLNzzf/ursXb+LyI+6MHklfNfisyP9aMfXn8tHt///firf/aft92ShXv+P/jFOP/5c1H+cvV/XiMi8vxL++XRb/UjX535ZCmPfqvtZjRT62CzlL/61bab0UytL/6dPhwxYYre5Ku/8zdj7cUfRAzfbbspDfhc5Nr5KOWdthvSgFfi4e/+dvzF/+6ftN2QhXvpf/SP4uIXz0f5i3/edlMakS/96H4p7/QjX+VLpR8/rxEZL5Ze/O0XEXnmp+SrHitP/jhif/UnQufaRkTsRom9tpuy+FrjMxGP342y98ttN2XxPv565GAjyvu/2XZLFu/8FyMHH4uy/622W9KMtYv7w/JvepGv1vLFMiz/pu1mNGKQG2VY/m3bzWhE5muOD/ZYn/JVid0o8ZdtN2XhBvGjEbkew/KdtpvSWK2lfLvtpixcxo9GDPejfPA7bTelmXrP/PR+efzbvchXeeZTpZT7bTejmVr3z5fy3dU/ZhIRkS/9QufHr/pxpgEAAAAAAAAAAAAAAJ1ngjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ2wlBPcM/NmZpbMvDvl+Z3M3DlmHce+BgCgL+QrAIB6yVcAAPWSrwAA6iVfAQBdtpQT3CPickTsRcRWZl5quzEAACtAvgIAqJd8BQBQL/kKAKBe8hUA0FlLN8E9M69ExEZEvFU9dLntNgEALDP5CgCgXvIVAEC95CsAgHrJVwBA1y3dBPeI2I6I+6WU2xFxLwQsAIDTkq8AAOolXwEA1Eu+AgCol3wFAHTaetsNOInM3IiDQHWjeuh2RFzPzK1Syr022rS7u3spIq4cfvxja+s/1dqOAjhK5lrbTWiy2LZb0GSxbTegKSXXNt7d3b0+4ak7m5ubd9pu37JZpnx1cf2MfAV0U0aP8lV/Mkdkf2odltx4IF/VRr4CqEOfxq/6kzn6VOuwhHxVo2XKVxsvnvmpZby6GNAHfcpXjg+uouEwNvYeyFd1ka8AamD+1arqTa3LcHxwqSa4x7OzBW9V/96OiOvV460ErIi4FBFXDz+435/vc2DJlFKW7Xf/aWrtzd+6JfpT6zAHH48JfW+lEwFrySxPvurV30zAMill6f62PkWt/ckcvao1Ur6ql3wFcEqllPW+DLH3KnOUpbyr8Jy1ylc1W5p89eTJMM621CCAozg+uJr6VWvIV/WSrwBOqQwdH1xF/aq1++NXy/ZhXImIe6WU+xER1b9ukwMAMD/5CgCgXvIVAEC95CsAgHrJVwBA5y3NWSSZeSkitqr/lwnPt3KbnOpS/B+5lsz+v3vnG48jvt7GvgI4SkY8KhHn2m5HI7Vm7JeIXtwSKCP3oye1rg0/+M7m5ubn2m7HKli2fPX4we43Qr4COqhf+Sp7la/6UutaDuWrmshXAPXI7Fm+Kv3IHH0aq1sbFPmqJsuWr6L81TfKI/kK6J7MeFRKX/JV7Edv8lX2pta1tZCvaiJfAdQjs/Ro/Cp6NH7Vo+ODg+4fH1yaCe7x7CzBNyNib+zxjYh4Ow7OLnyr7UYCACwR+QoAoF7yFQBAveQrAIB6yVcAwFJYtgnu90optw8/kZmj2+QIWAAAs5OvAADqJV8BANRLvgIAqJd8BQAshaWY4J6ZW3Fwe5xrU15yOyKuZ+blsQC2kZnbE167N3YrnVleAwCwcuQrAIB6yVcAAPWSrwAA6iVfAQDLZCkmuMez2+PcnvL8rYi4HhHbY6/ZioidCa+9ExFvnOA1AACrSL4CAKiXfAUAUC/5CgCgXvIVALA0lmKCeynlWkw/ezBKKXsRkWNfHxuOZnkNAMCqkq8AAOolXwEA1Eu+AgCol3wFACyTQdsNAAAAAAAAAAAAAACACBPcAQAAAAAAAAAAAADoCBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADohCyltN2GlbT/e//qF/fff+9/0eg21899MQaDj8dw+N21J49+t6ntrv3wj3wpz35wvuzvN/bNlJnrpZS1zNwvpTxprNaLL+fwuQvrpex/0Gitw7KWg4ZrzQsZD/7tepQnjdUakWullPWDuuNRY5u98HLG+VyP4QfN1ZpjtUaDtUZEDC6eGZZHTX4Pr5VhrB98URqtdVDOnI3H333c2AZzkKWUs1Xdj6MMm+tkH6+fLY/+srFaMzNLiarWeFwaDBQZ8V588ssvN7U9uuPhr/3KLz557/uN5qvhufNP89Xg0cPG8tVzW1/60uC5cj6aDOsZ66XEWmbsR4nGMkesP58RH6xHg/kqxvJVNJivYnAxH//2762XYYP5KnMtouqHS3P98JmXP5WDl9ea/Vwj10q0lK/OfuxMDB/2JEs+dzaGP2gwX+WhfNXg78Vy7mwMv9+PWjPfi7OvyFc91Kt89fpPfmnw/OB8RJODoc/GryIazBx5MSMer0c0OqbTTq1xMd+/98310uD4VWaulVLlq2guX539xA/n+g+t92OsLiLiuZfPRDzuR61x4WzE+81ljjiUOZr8vVjOnY3SYK2ZWYZVrYOm81W8F/kp+aqX3v3F2H/c7PHB/fjisMTHBxnfXVuLxvJVrD33pYgn5yMaHAdvMXPEo3cb7ocH6yXKWkbuRwybq/XMxzPK46bH6toZ5xiNS0bD41dtZY68cKY0mq9iLUa5ueFaM86fLfGwF/mqT7VG5HsZL8tXvdS/fFUa/T2S66UM1zIH+6XBfJXxXEY8Wi8N9sNt19ps5oixzJEN9sPPZZT3Gj4+GE/H6pof0zl3JkpPjg+uPX82Gs0c8aE5SRHRXOb4IM6W/ff6Mf8q87041+3jgya4r5Dd3d2diNiOiDubm5tvNLXdx3/4+9/Y/c//ydffv/crbe+ChXvxf/A/iZf/5//dKOWdtpvSgFciHz+O8v5vtt2QxTv3hcgyiPL9u223pBGPX/4PH33/g71zbbejCS+/P9jf/39dX2u7HU1Yu/y/3i/f3+lFrXnhZ78TZy99ru120A9t5auI73+j7P/+16O82/YuWLzB5yLzbJTyh223ZPHylcjHH/QnX539WJT9b7XdkkbkmS8/KsPf6UW+yrWv7pf9X+1H5lj76n55/C/6Uev6T34nBj8qX9GI9vLVe98o5Q++HvGg7V3QgFci80xPxq8+GznMfmSOtc9FDs5FGfYgN0dErv3Eo1J+rx/5Kl/fL+VuPzJHr2r9wncifli+ohHyVRNeiRLnY7/827YbsnCD/JEY5FoMy3fabsria40fjcy1KOV+201pROaPy1cr6KDWf9mTWr/wnYgfka9oRKvHB4ff+nqUHuSrwSvV8cE+jF/1a6wu8lwvsmRExCA//2hY/rAX+Wotf6o3+Sryq/uP9n+3F7WeGbzynbXc7HS+GrTdAAAAAAAAAAAAAAAAiDDBHQAAAAAAAAAAAACAjjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATjDBHQAAAAAAAAAAAACATlipCe6ZeTMzS2bebbstAACrQL4CAKiXfAUAUC/5CgCgXvIVANAFKzXBPSIuR8ReRGxl5qWTvjkzr2fmTttFAAB0iHwFAFAv+QoAoF7yFQBAveQrAKB1KzPBPTOvRMRGRLxVPXS57TYBACwz+QoAoF7yFQBAveQrAIB6yVcAQFeszAT3iNiOiPullNsRcS8mBKzMvFTdRuedzHyQmW9n5lb13PXqPVuZuTN6HACgx+QrAIB6yVcAAPWSrwAA6iVfAQCdsN52A+qQmRtxEI5uVA/djojrmblVSrk39tKdOLiFzq3q68vVYy9FxP1quRQHAW1vlm3v7u5eiogrbe+Dyo+N/t3d3b3e1EafP3Pmp9ouHJhdRqy13YZmy+2N3tQ6LLnxYHI/d2dzc/NO2+1bFfLVU63kq42Ncz+1SmeiwurLHuWr7E3mCPkqQr6qlXz1VHv5SsCCJdKnfNWfzNGnWofD2HjwQL5aNPnqKfkKmIF8taJ6U+twmPJVA+Srp9rLV735qYZVIF+tqN7UWkps7L7b7Xy1EhPc49nZgqPgdDsiRmcE3ouIyMztOAhPb5RS7lSP3YlnQexWZl6KiCilXDvBti9FxNW2d8AhrzbZpv3+/EzDSihlZX73z1Br6c3weq9qjfx4TO/nOhGwVoR89WGvNtmmJ0+GcbY3v61h+clXq6lXtQ5DvmqGfPVhrzbZpidPhnH2bNslA7MqpchXK6hftcpXDZGvPuzVJtskX8Fyka9WU79qla8aIl992KtNtunJk2GcPdN2ycCsHB9cTb2qdQmOD67Kh3ElIu6VUu5HRFT/Hr5Nzv3Ra0e3vyml3CulvHHoLEMAAOQrAIC6yVcAAPWSrwAA6iVfAQCdsfRnkVRn/W1V/y8Tnt+qgtT9zHwrDs44uJuZe3FwlsGt0RmF86guxd+JS5jv7u7uRMR2HNwi4I2mtvv4L9/9RkR8ve36gRllPIqIc203o5FSM/cjohe3BMrM/dKTWtdy+J3Nzc3Ptd2OVSZfPdNWvor4/jfKvnwFyyKzPCqlL/kqepM5epWv1op8tWDy1TPt5av3vlGKfAXLIjN6lK9yv5R+ZI4+1bq2FvLVgslXz8hXwCzkq9XUp1qNXy2efPVMq8cHh/IVLIt+HR/sT+bo01yzwRKMX63CFdxHZwm+GRFvjC1vVo9fGb2wlHKrlPJaRLweETfi4PY2O5l5efbNAQCsPPkKAKBe8hUAQL3kKwCAeslXAECnLP0V3OMgYN0rpdw+/ERmjm6T81ZmbkfEdinlWnVLnHsRcSMz34mDMxBvn2SjAAArTL4CAKiXfAUAUC/5CgCgXvIVANApS30F98zciqPD0e2I2KjOENyLiKuZeX3s/dtxcBbhXtu1AAB0gXwFAFAv+QoAoF7yFQBAveQrAKCLlnqCezy7Pc60gHWr+ne7OmvwVhyErJKZJSJ2IuJOKeVG9bq9iNjOzLtVeAMA6Bv5CgCgXvIVAEC95CsAgHrJVwBA56y33YDTKKVci4hrRzy/FxE59vVbmXkrIjaqh/aq4DV6/kZ1W52IiPtt1wcA0DT5CgCgXvIVAEC95CsAgHrJVwBAFy31BPd5jAeqKc/fabuNAADLRL4CAKiXfAUAUC/5CgCgXvIVALBog7YbAAAAAAAAAAAAAAAAESa4AwAAAAAAAAAAAADQESa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCSa4AwAAAAAAAAAAAADQCettN4Dll2fOfPMT/8urX2tym8McfDIiLkTE+4My/POmtrv+8Y3nI869nLk5bLDcQURkRJSIaHC7ZzPOPMo886PNbTMjSymD6r/7jW13cDZj+Cjz3CuN1hrl6UlGzdUaEWfXnju7sXahyW0++1yzwc81IqK8N1j79/9XDdcaVa0xjIOf22YMLgzyY/9ec7WWyBJPf16HkQ3WWh5vNrYtaE1+M9e+0Gi+KsPyyWEpFwaZ7+cgG8tXEWefj/ig+XxVqt640Xx1pspXn26y1meZIxvMHIOzGTHMXPtkw7WWqtaGM0esnc21v9lo5mjlc42IiPVBi7U2m69ifZBn/1sN5quS8exCBMPIbLBW+Yo+yG9m/niz+aqUTw6H5cJgkO9nNp2vHjecr8rY+FU2m6/WPuhJ5jiTEU8y1z7RYK05VmvjmeNs5lebzRzVOEc0OS55UOug2VoPZY5oMnP0qdYP5Ct6oGf5avj45fX9jzU6flVKyTz427Cx7eb6uYx4kmux0Wi+auU4Up7JiP3MfEm+WlCxY8eRVjxfHTpm1vT4VX6tJ7U+ka/ogfxmDv5aw8cHY+z4YLRwfLDJcY4Wx6/iSTZ8LLSlcY6DWtfy5WazZGuZY+3sWv5MT/LVWo/GdM4Mzq39RFvz6uSrQ0xw59TOvHLpP42I/7TJbe7u7u5ExHZE/PLm5uYbDW56O8p3dsrwD9aarLeSEdHcdgevxjBfiCfDP2pumx/+9dzYdtfKp2JtEFHKt5v9XLP5WiMiBuXSo9j/7XPtlNpsrXHha/vlyW+18fMapem7pOTP7z/a/1YrtcbBRNHGnBm8sttWodCci43nq3cftJiv4k92Snmn+R/t0nC+ilciS0R58vtt/RprbrtrlyLXzkcZ/uHq1xoRufYTj0r53Ubz1VOl4VrzZ/fL8Nfa+VxLs/kqBz+3X/Z/tb181WitX9qN3GipVGjKc83nq3d7mK+aHr+Kz0bmerRUa8P98CuReaYntUZkfuFRKb/XTr5qOkvm6/ul3O1H5uhVrV/Yjfh4S6VCU/qVrx78H/+Lnb/4z/63K5+vXv4f/0ex+e99JYa//X9f+TGdwed/IfLHPh/l/d9c+VojIoYf2370ePjvepGvzq9/Yf/9J60cz49oOHOcX/9r++998J1+1Lr2I7tnmj36Ci3o2fHB8sc7LR1Hanj+1SuRea69MZ2Gx+oiz8WwtNY3NTv/Kj//aFj+oBf5ai1/ujdjOpFf3X+8/zu9qPXM4NXdzOdbKnU24h8AAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ1ggjsAAAAAAAAAAAAAAJ2wNBPcM/N6ZpYjlp0atrFdrWu77XoBABZNvgIAqJd8BQBQL/kKAKBe8hUAsCzW227AHN6Y8vhe2w0DAFhS8hUAQL3kKwCAeslXAAD1kq8AgE5bugnupZQ7bbcBAGCVyFcAAPWSrwAA6iVfAQDUS74CALpu0HYDFqG6nc6VzLycmXer2968nZlbE173TmY+yMybEbHRdtsBALpIvgIAqJd8BQBQL/kKAKBe8hUA0Kalu4L7jLYiYrv6/404CE7Xq8dfi4ioAtWV6vm96rmbJ93Q7u7uRvXeLnhp9O/u7u72qdbUfa3U+sILL3zl3Nm2S4fTymy7BY0p0Z9ao/So1jw/5Xf//c3Nzfttt26FyVfy1UK88MILXzl3ru3S4dR61A/3qdb+5KsScf5d+aoN8pV8tRDyFauhR+NXvcpX/am1lDj/7rvyVQvkK/lqIV544YWvtF04nFZmf/JVKf0Z0+nXsdBwfLAd8pV8tRDmX7Ea+pOvokdjOn07Ptj1fLV0E9wzc2fKU7dLKbfGvt6IiNdLKXvV+yKqAFWdSXglIq6VUm4cWvdJO+utiNg54XsW7Wc62KaVqPXhw4chYLHsSim9+S4uK3qnkom1lv7UOtwvn4rJv/tvRMS1ttu3jOSrmchXC/Lw4cMwAYtlV0r0J1+V0pvM0a98FfJVzeSrmchXCyJfsQp6NX7Vq3zVn1qHQ/mqbvLVTOSrBXn48GHb9cKpDXuUr6JPxwejT/nK8cG6yVczka8WxPwrVoHxq9Xk+GBEdChfLd0E94i4N+Xxw2cM3BmFqwnPX67+vXXoPbfi5AELAGDZyVcAAPWSrwAA6iVfAQDUS74CADpt6Sa4l1JmPTNg77gXHApgM71ngnsR8Ubb+6VyIw7OqPv1iLjadmNWsdbz589/JSL+cdvFw2lk5uMS/bjKaEYM+3IV98wYRk9qHazln0WUX5rwVCduj7OM5KsjyVcLJl+xCjLjcV+u4p6Zw75cuSCzP1lysBZ/FhHyVY3kqyPJVwt2kK++K1+x1DJTvlpBfap1MJCv6iZfHUm+WrDz589/5fvGr1hyg8zH0ZPjgxH9OWaWkb2pdTBI+apm8tWR5KsFc3yQVWD8ajX1a/5V98evlm6Ce9dsbm7uRcSdttsREbG7u/ug+u+Dzc3NTrRpJWstbVcPp1X6812cffqJzR7VWh6uej/Xd/KVWmEJ9agf7lOt/clXGSFfrTj5Sq2wfHo0ftWrfNWfWjPlq1UnX/Wv1u+3XTycUin9yVeZ/RnT6dexUPlq1clXPay1T7/BWFH9yVfRq5/Y/mTJZTg+2IszDSa4FxGRmYdvh+P2OAAA85GvAADqJV8BANRLvgIAqJd8BQAszNJdwX1CKBp3b8Jtbz6ilHI7M+9HxPXMfLOUcr9a75W26wMAaJp8BQBQL/kKAKBe8hUAQL3kKwCg65ZugntE7Bzx3Bsx++1q3qzW9U5mjh57KyJutl0gAEDD5CsAgHrJVwAA9ZKvAADqJV8BAJ22NBPcSynXIuLajK99Y8JjdyIix76+l5mvRcRW9dD9Usr9iLjVdq0AAE2QrwAA6iVfAQDUS74CAKiXfAUALIulmeC+CNXtdGY94xAAgGPIVwAA9ZKvAADqJV8BANRLvgIAFmHQdgMAAAAAAAAAAAAAACDCBHcAAAAAAAAAAAAAADrCBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADrBBHcAAAAAAAAAAAAAADphve0GwJLZi/zEd3LtE41tsAzLJ4clLgwy3s9B/nlzpZ59flCevHwuPzZsbpuRpZRBRERm7je31TMZ8SQzX1r9WiMiYnA21/9Wk9tssda1Qa7/fIPbLFlKVLXGMCJLc9s+Mzi/9hON1VqiZFS1RsYwG6y1xAebTW0LaMRexCe+k9lgvirlk8NhuTAY5PuZzearyPdfzrVPrH7mWDubkcPMtc0Ga82MMqz6pqYzx/rZzK82mq+i+lxbqHWQg6+1VeswIhrMV+uDXPsbzdVaSsazCxEMIxvMkuWxfAWrZS9i8zuZzf1ot5qvhg9fzuFGD/LVuYzYb3j8Ksf64Wg4c5xpPl9FVWu0kK8arfVQ5mh0/Gp9kPlzDWfJZ+NX0WiWNH4FK2bvhb/7C9954e/+QmMbLDn4ZIm4kBHvZxk2lq/WX9x4Ps/uv7z2Iz/ZcL56emyluX7izMWM9ZJ55tON1trWmM7a4MLZ84PnG9xmZqnG6po+PpixNriw/oWeHB9cGzx/5rUGjw/GoeODzeWrEvvyFayWFuZfxSeHpVwYZL6fg2h2/Co+eDmzyWNmbY1zHMy/WsuXm82SVa3Z+JjO2tm13Gp2/lV7tfZo/OrM4NzaTzacr54dC202Xz3pfL4ywR1O5l7Exc81ucF3H+zuRMR2RPzy5ubmGw1uejt+//+7s/9b/7e1Jusd09h2B1/Yjvzil6J88Dut1FoarDUi4sn5v/3o4f6fnmuj1mi41ufOvLb/vcd/0tb3cKN3SXnx7A/tl8f/orVaG0ySkes/uRuDF1oqFViAexHPNZuv3m0vXz36//xXOw//H//Fyuerc7/wH8b5v/czUf7qV1e+1oiI/MTff1Qe/nov8lVe/IX98t7/uxf5Ki/83f3y7n/Zj1o/9rd248JGS6UCC9CrfPXgn/2fdv7if/9PVj5zvPRL/yg2/4d/K8pf/POVrzUiYvDj//BRid/vR77Kn90v5V/2I3PE1n559P/rR61nfmo31l5sqVRgAe6d/dxrjear3d0Wjw9+71/tlO/+yuofM3vhK5EXN6N88Lu9yFfl/Fcf7Zf77eSr0mytZwZf3v9g+K/b+VxLs5njzODL+4/32znGHQ3nqzODV3cjn2upVGAB+jX/qvzxThn+4epnjsErEXkhSvn26mfJiMj88UfD8q1ejF+t5V/fL+VuLzJH5s/tP+5JllwfXNrNeL6VUmfV6A4BAAAAAAAAAAAAAIBpTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATTHAHAAAAAAAAAAAAAKATlm6Ce2Zez8xyxLLTdhsBAJaJfAUAUC/5CgCgXvIVAEC95CsAoOvW227AKbwx5fG9thsGALCk5CsAgHrJVwAA9ZKvAADqJV8BAJ20tBPcSyl32m4DAMAqka8AAOolXwEA1Eu+AgCol3wFAHTVoO0GLEpmbmfmTmZujT22kZlvZ+aVsceuZObd0e11MvNy220HAOgi+QoAoF7yFQBAveQrAIB6yVcAQFuW9gruxyml3MnMqxFxMyJerx6+GhFbEfFWRERmXq8euxERtyJiOyLezsw3Zj1DcXd3d6NaZxe8NPp3d3d3u+3GqHW5a33hhRe+crbtylmIzMy229CYEmpdQSXy/LuTfx/e39zcvN92+1aZfCVzrJDW8lXbhbMog970wxH9yRwRpTe1ylftka9kjhUiX1GzHo1f9Spf9adW+ao98pXMsUJay1fn2q6chcjMjNJ2K5pRepQ5+jV+Fed35atWyFcyxwppL1+ZgLWS0vjVSupVlixxfvfdbuerpZ3gnpk7U566XUq5Vf3/rYi4WwWpO3EQpt4opexl5kb19Y1SyrXq9bcy825EXKleP4utiNiZ8bVN+ZkOtkmtS1brw4cPQ75aTWVYevTRlpW9U8lHKu1RrcP9+FRM/n14IyKunXB1jJGvjiRzrKbG89X5titmIUrpT74qZXXvBNfnWocl5asFka+OJHOspsbzFauplHK2L4eSSunPmE6v8tXQ+NWiyFdHkjlWU+P56lxvflv3S5/Gr6JHmaNX+crxwYWRr44kc6ym5vNVf3rhXhn2KF/1afwqelTr/hKMXy3tBPeIuDfl8adnDpRS7mfmjYi4HhGX4yBMjYLT6FY4Nw69/82I2Gi7OACAFshXAAD1kq8AAOolXwEA1Eu+AgA6aWknuI+d9Xfc625k5uWI2Dr0nkvV83uHXn/SS+vfi4g32t4flRtxcJbZr8fB2ZGrTK0Ldv78+a9ExD9uu3jql4N8HMO+XKA/hxH9uHJBRg5LT2odrMWfRcQvTXiqE7fHWWby1UQyx2qSr6hVZj4u0Y98lRm9yRx9qnWQRb5aEPlqIpljNbWWr96Tr1ZSv/JVDvty5c1e5auB8atFka8mkjlWU3vjV4/lq1WUmY+j9CNfRcawL1dxz4zeHAt1fHBx5KuJZI7V5PggtRpkPt7vSb7q0/hVZPYmS64twfjV0k5wn9UoXEXEXmZenzWYzWpzc3MvZr+dzkLt7u4+qP77YHNzsxNtUuty11raLp6FKKX056PNHn0b96jWjPJw1X/3d518tZrU2oxHbRfPggx70w9Hr/5MyN7UKl+1T75aTWptxnttF8+C9Gj8qlf5qj+1ylftk69Wk1ob8rjt6lmEPh0fzB5ljn6NX4V81TL5ajWptSG9+W3dL8X41UrqVZbM7uerlT7TIDM3IuJmHJyBdSMirmbmVvX0neo124feczMz77bddgCALpKvAADqJV8BANRLvgIAqJd8BQC0YWmv4H44GB1yr7r1zc2IuD86a7B6z82IeL2Ucicz70fE9cx8o5SyV4WvyxFxq+36AACaJl8BANRLvgIAqJd8BQBQL/kKAOiqpZ3gHhE7Rzz3RmZeioOw9PrY429FxN2xW+W8GRFvR8SDzBy95k4cnG0IANA38hUAQL3kKwCAeslXAAD1kq8AgE5augnuVTC6NuPLbx167/2IeGns63sR8drY2Yh71WMAAL0hXwEA1Eu+AgCol3wFAFAv+QoA6Lqlm+C+CKWUO223AQBglchXAAD1kq8AAOolXwEA1Eu+AgDqNGi7AQAAAAAAAAAAAAAAEGGCOwAAAAAAAAAAAAAAHWGCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnWCCOwAAAAAAAAAAAAAAnbDedgOAztrLl175jbWf/589bGqDw1z/zH7kpyMizpQPfqWxSp9/eTPWzn02Bz/3qLFtRpwtw3IuIiIH+b0GtxuDfO7C+fVXmttmybPDMjwXETFouNaMvPj8mU82ts2MWBsOy3NVrT8oEfvNVTu4mGd+psn9u1aG8VxERA7iB9Fkrbl+scE6Aeq0t/7ZH/+Ni//T/6S5fLV+5jPDXPt0RMT6Bw8by1eDlz+1GefOfzZf/gfN5avMZ/kqo9HMEWsfv5DP/c0Gt5lny3DYSpaMXL/YcK1rZTisMsfgBxGlwXy1fjE33mg2X5UqX2XD+WpwVr4CltXe+S/+5G98+h//Z43lqzh77jPDtfVPR0QM3n+vsXx15tOf2cznLn42P/Pfa3b8qozyVdOZ42MXMn6qyW22V2usXcxstNa1UkqVObLZzBFrF/PczzY4Lnmo1myyVuNXwNLai7M/9Bu5+Q8ay1elDD7zZFgdH1zbb+744NrHNmMtmj8+2FLmyLx4YZB/rdF8NaxqHTSerwYXzwx+vNF8Nawyx6DhfJUxuHh27cearXXsWGizta7JV8Cy2ov8+G/k2k83l6+G+Zkn++UgX52J5vJVXNiMePLZzC82mK9aPGYW5y6s5RcbPT44HLYz/+pg/OrLzR4fLNXxwWz6+GBePJOvNVrrsDoWOmj4WGiW9YuRzVU6DxPcgWnuxQ/9+Fea3OCD3d3rEXE1ImJzc/NvNLjp7fjBN3fK9++ebbLekRLxQpPb+97H/uGjf/dXpcFtlvH/N1rrlz/xcD8/+OVGt/n01ij7B5OTGnP25/fL8DcbrXVkNNG9KTn40rtdD1gAU9xb+/xPN5qvdtvMVx/8wU7Z/51e5Ks8s/WoDH+7rX642VrX/sZ+Gf5WPzLH+tf2y+PfaKfWaLjWtZ9+t406AWpw77mf/Vp/8tXj398pH3yzH/mq/PyjEr/XTj9cGq41X98v5Ztt1dps5sjX2xu/KvHch4YpF13r4EvyFbCs7sW5Tzear95tM18Nv71Thn/QTr5qOnMMfurRsHyrlX542HCtg/yZ/VL+dbP7t/q3+Xz1lf1hw7WOih02XOsgP/9uNvutBFCXexEbzearB7vXI7K944Mf/HY/xq/OfuVRefyv2skcTdf63H97v5SWjoU2na+efGk//vztduaaNXx8MDb+3rtx8cVGN3lSg9OvAgAAAAAAAAAAAAAATs8EdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOsEEdwAAAAAAAAAAAAAAOmElJrhn5nZmlszcPsF7djLzetttBwDoIvkKAKBe8hUAQL3kKwCAeslXAECXrMQEdwAAAAAAAAAAAAAAlp8J7gAAAAAAAAAAAAAAdMJKTnDPzOuZeSUzL2fm3er2OW9n5taE11497jUAAH0nXwEA1Eu+AgCol3wFAFAv+QoAaNN62w1YkK2I2K7+fyMiNiLievX4a2OvuxwR9495zZF2d3c3qvd0wUujf3d3d7dPtabuU+sKysxXSikREdFkrS+88MJXzrVdfIMyMttuQ6Pl9kdvai2R59+d/Dvi/ubm5v2227fC5KsV74fVuppazVcreTr1FDnoTT8cpfSn1uhPrfJVa+SrFe+H1bqaWs1XvemZIiIjo7TdiAar7Q35KuSrRZOvVrwfVutqajVfnWm7+iY5Prii+lNryfO778pXLZCvVrwfVutqcnywISlfraYejV/loPPjV6s6wT3iIDC9XkrZi3j6++TmhNe9OcNrjrIVETttF3vIz3SwTWpV67FG4arSWK0PHz6MPg1glVLOtt2GBmvtTXQuZTXvyjLJcD8+FZN/R9yIiGttt2/FyVf9oNYV0mq+eq7t6ptThj3KVyt6J7iJtcpXEfJVE+SrflDrCmk1X11ou/rmlBL9yVfGr1aSfNUq+aof1LpCHB9shuODq6lPte4Pi3zVHvmqH9S6QhwfbEa/xq/6M6bTp1qHw+x8vlrlD+POKDhVJp1RcHuG1wAAcEC+AgCol3wFAFAv+QoAoF7yFQDQilW+gvve6Vcxk3sR8UbbxVZuxMFZZr8eEVfbboxa1XpSmfmPSilfr75s7Ofq/PnzX4n9+Mdt19+UzHwc0Y+zCDNz2JerjGZGb2odrMWfRcQvTXjKQMniyVerTa0rqNV8FT3KV4N8XIY9yVfRn8whX0WEfNUE+Wq1qXUFyVfNyIzHfbkKVmYO+3JlKPkqIuSrJshXq02tK0i+akZmylcrKDOH0ZNa1wYpX7VHvlptal1B8lUzMuNx6c38q+hRvurR+NWgdD5frfIE90Zsbm7uRcSdttsREbG7u/ug+u+Dzc3NTrRJrWo9Ya3bo/83XusP2q6+OSU+fC+iFafWFZRRHq7678O+k6/UqtZaa20vX33QdvUNKsPe9MOR2Z9aoz+1ylerT75Sq1prrbW9fPW47eobVPozzhE9GtORr1gl8pVa1Vprre3lq2Hb1TfJ8cEV1Z9aU75adfKVWtVaa62ODzahyFerqUfjV2XY+XzVizMNAAAAAAAAAAAAAADoPhPcAQAAAAAAAAAAAADoBBPcAQAAAAAAAAAAAADohPW2G1CHUsqdiMixr9+o4zUAAH0lXwEA1Eu+AgCol3wFAFAv+QoA6BJXcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBNMcAcAAAAAAAAAAAAAoBPW224AQCdc+LEf5Nkffr+x7ZV4bljiQkTEYBDvNlnqC3nmpR97cW2/qe1lRJYo1QlV2dh2DzY3GOTZn29um6VkqU4ey4hhZJbmin1+kGtfbXL/ZilVrRnDiGiw1thscFsAzOvMZ3+Q659oOF+VKl9lo/kq8uJLOfhYw/1wqfrhhvNVPD/IM3+jP/nq/N9ucP+WQ/mqyVrlK4ClcPaVH+T6D/UkXz3/UsbrPclXFweZrdXa8JjOxUGufa0n+arIVwDLYPDpH+Tg5QbzVRk7PthwvooLLw3yZ3qTrwb5ld7kq7X86z2p1fgVwFLo0/HBeO6lvPDx3uSrzK1+jOmcuTDIT15u8FhoHDoW2mS+6v74lQnuABF3Ii9cjPULjW1wd3f3ekRcjYjY3NxstLP4/v/1//LtP/vf/CevNrnNMWtNbuyv/cov75dH/3Wj2xwpDd8lJZ/7hf3y+Jf7UeuZL+/G4GNtlArA7O5EnLsYea6xDe6+216+ivIn3y7D33m10W2ONt1wvsq1r+6X/V/rR+ZY+7n9sv+rPan1J3YjPt5GqQDM7k7E+YsxON/YBtscv4r402+X8nuvNrvNA6U0nK/y9f1S7raTOUrDmaNXtX5hN8L4FUDH3Yk4ezHibGMbbHX8Kv7k22X4u682u80Djeerwc/tl/Ive5I5fna/DFsaq2u61sEXdyOeb6NUAGbXr+ODH3z72+X9u682us1K48cHP/YP9kv59X5kjsdf2B/+23/Wi+ODg0/+/d0488k2Sp29jW03AAAAAAAAAAAAAAAAIkxwBwAAAAAAAAAAAACgI0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE0xwBwAAAAAAAAAAAACgE5Z2gntm7mRmyczrR7zm7cOvOe49AAB9JV8BANRLvgIAqJd8BQBQL/kKAOiqpZ3gPubypAczc2PKc3ci4n7bjQYA6DD5CgCgXvIVAEC95CsAgHrJVwBAp6y33YBTuh8RlzJzu5Ry59BzlyNiLyLujT9YSnmj7UYDAHSYfAUAUC/5CgCgXvIVAEC95CsAoHOW/Qru9+MgQE06U3A7Im4ffrC6tc6Vsa+vZObd6tY5O5l5OQAA+ku+AgCol3wFAFAv+QoAoF7yFQDQOcs+wT0i4lYcClhjt8e5M+H12xFxqXrd9Yi4Wb3urTg44/DtzNxuuygAgBbJVwAA9ZKvAADqJV8BANRLvgIAOmW97QbU4HZE3MzMy6WU0RmDlyNir5Rye/xswXFVCLsaETdKKdeqh29l5t2IuBKTw9lH7O7ubkfETts74ZDt3d3d0nYj1KrW01Dr4qyfP992yY0pEWttt6GxWkt/at3fz1f3Hkz8ubmxubl57cQrZBL56qP61A+rdUWpdXE2XowYZNtVN6OU0pvM0ada9/fj1b2/lK8WTL76qD71w2pdUWpdnI2NiMEqXJ5nBn3KHH2qdX8/Xt3bk68WTL76qD71w2pdUWpdnI2NNH61gvpU6/5+yleLJ199VJ/6YbWuKLUuzsYLuRJXl55Fn+Yk9Wmu2X5Ze3Vvt9v5auknuJdS9jLzdnz4ljgTb49zyOiswxuHHn8zIjbargsAoC3yFQBAveQrAIB6yVcAAPWSrwCArln6Ce6VOxFxPSLeGrs9zpvHvOdSxEFAG3+wlHL/hNu+FxFvtL0DKjci4mci4tfj4OzIVabWFZSZ/6iU8vXqy678XK1crfnBB/80Ij7V9j5opNaIYYl+nDCZ2Z9aB4P4s4j4pQlPnbQP52jy1YHe9MNqXU3yVTMGa/FPY9iTfNWjzJGZval1sJbyVTPkqwO96YfVuprkq2YMBtGf8avMYSn9yBx9qtX4VWPkqwO96YfVuprkq2YMBvFPo8hXq6ZPtcpXjZGvDvSmH1brapKvmtGv8avoTebo01yzQQ47n69WZYL709vkxMHZf3tjt8tZqM3Nzb2Y8XY6i7a7u/ug+u+Dzc3NTrRJrWo9Ya3bo/+rdXG+u7//sO36G9SbWy31qdbM8nDVf0d0hHwVveuH1bqC5KuGlD952JuOOLI/pfYpX4V81RD5KnrXD6t1BclXTfnTh6U3PXF/Mkefas0M+aoZ8lX0rh9W6wqSr5ryJ/LVaupNrY4PNka+it71w2pdQfJVQz74Xo+OD/Ync/Sp1mU4PrgSZxpUZwGObpMzy+1xIqpQlJnb4w9m5s3MvNt2TQAAbZKvAADqJV8BANRLvgIAqJd8BQB0yUpMcK/ciYNb41yOGc7oK6XciYNL6V+vbqsTmbk16/sBAHpAvgIAqJd8BQBQL/kKAKBe8hUA0AmrNMH9dpz89jhvVu95kJklIu5GxL2IuNF2MQAAHSBfAQDUS74CAKiXfAUAUC/5CgDohPW2GzCvUsobh77ei4ic4XU59v97EfHa2G1y9qrHAAB6R74CAKiXfAUAUC/5CgCgXvIVANBVSzvBvU7V7XIAAKiJfAUAUC/5CgCgXvIVAEC95CsAoE6DthsAAAAAAAAAAAAAAAARJrgDAAAAAAAAAAAAANARJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJJrgDAAAAAAAAAAAAANAJ6203AIBmPf/3tl989ce/8G5T2ysRz5XMCxERg1Ia225ERKx//KWMv7Pf4BazlIOTxzJjeFB+U1t+YZBnf765WkvJUp0olxHDyGyu1jLcbGxbADCL/MSLufbV5nJOKc8NSznIV4NBs/kqLr6Ua19tMF+VQ/mqwcwRFwe5/rUG81VkiVLlqxxGNpglI+QrADpm88XM15vMOc8Nh6N8lc3nq3y94fGrKnNkNjt+FRcH/alVvgKgaz7xYg5eaHj8KlrMVz/bk8xxcZCDn+tJrUW+AqBb1j/9Yj7/YoP5KsaOD7aRr7b6cXzw3IXB4LO/2Gy+Gp9/1ehcs+x8vjLBHaBn1j7+4sbax19sbHu7u7vXI+JqRMTm5majHePD3/7m7nd+8fLLTW5zTKN3SfnCP7+zP/zNm2ttFFoarnXw+f9gNz651UapADDFmY2IM41tbffd9vJVxPd2y/6vtpKvms4cufZz++XJr/QiX+XaT+xGfqyNUgFgiobzVYvjVxHf2y3lbjv5qjScOfL1/VLutpOvGq/1C7sRL7RRKgBM0bPxq+Gv9SNfDX5uvwx/rR/5avDF3QjjVwB0SJ7diDzb2OZaH7/qTb766v7+2T9oJV9F0/Ov8vO72VKhM7ex7QYAAAAAAAAAAAAAAECECe4AAAAAAAAAAAAAAHSECe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHSCCe4AAAAAAAAAAAAAAHTCetsNOE5mblf/3Sul3Fvg+u+XUu63XS8AwKLJVwAA9ZKvAADqJV8BANRLvgIAlk1nr+Cemdcz80FE7FTL3cx8kJnXp7y2TFluZubGoddvjN4ztv53MvOdzNxqu3YAgEWQrwAA6iVfAQDUS74CAKiXfAUALKtOXsE9M+9GxFZE3IqI26WUO9WZfpcj4mpmbpRS3prw1jcOfb0dEVcj4tKh596unrsREbcj4v7Ya3cy83VnEwIAq0S+AgCol3wFAFAv+QoAoF7yFQCwzDo3wb06Q3ArIt4qpdwaPV5KuRMRdzLzfkRcz8x748+PvWbcnerswSuZeamUcj8zr8RBmHrr0PtvZ+adiHgnDoLWpAAHALB05CsAgHrJVwAA9ZKvAADqJV8BAMtu0HYDJrgSEXcOh6eRUsqNiLgXByFoFnvVv5fG1n9v0vpLKXtxcNbixozrBgBYBvIVAEC95CsAgHrJVwAA9ZKvAICl1qkJ7tVtcDbi4LY1R7kTEZcy89Lxa30arEa3vNmq3j9RKeVaKeXNtvcFAEAd5CsAgHrJVwAA9ZKvAADqJV8BAKtgve0GTHH/mOfvxMEZhJfGX1vdXmfcVhzcDudGdXuc7erxe3U1dHd3dzsidtreYYds7+7ulrYboVa1noZaV1PTtV7MbLvkxpQSa223oSn7sf7q3uTvpRubm5vX2m5fh8lXp9OnflitK0qtq6npWl966Uz0JWGVUvqTr/bj1b2/lK/mIF+dTp/6YbWuKLWupubz1dnoyxBW7/LVnnw1B/nqdPrUD6t1Ral1NbWSr9ouuiH9ylcpX81HvjqdPvXDal1Ral1N8tXi9Ctfxat/2fF81dUJ7vM6fNuce3EQrg7v7L0Z1wcA0HfyFQBAveQrAIB6yVcAAPWSrwCA1nV1gvvGMc9vVf9+KCiVUo47UWR05uB2TLlNTnWW4XZE3CqlHHcmY8TBGYw3Wt1bz/z3I+LViPhORPyf226MWtV6Upn5d0opX6u+7MrPlVqXuNaM+I8j4kLb+6CRWjOHJWLQdjsaqTWG342I/8OEp+6cdF09I1/Npzf9sFpXk8yxmtqsdZD5H5ciX62azJCv5iNfzac3/bBaV5PMsZpazVeDnuWrIl+13baOk6/m05t+WK2rSeZYTe2OX4V8tYIyi3w1H/lqPr3ph9W6mmSO1SRfNSMzh9GTfDVYgvGrTk1wL6Xcycy9OAg4t4946XZE3C+lnOhWN6WUvcy8H88C2rR1X51w1uFEm5ub9yOiE5fj393d3YqDjvgPu3KLALWq9YS1Xo+Ir0VEqHV1tFnrwz//0/8oejLBPaL05lZLgxjurfrPTZ3kq9PpWT+s1hUkc6ymdmv9Xo/yVfQnXw1CvjoB+ep0etYPq3UFyRyrSb5qjHzFRPLV6fSsH1brCpI5VlPr+aonE7BCvmIK+ep0etYPq3UFyRyrSb5qTG/yVS5BvurimQa3IuJKdSbfR2TmlTg+gB3ldkRsT1p/Zm5ExJXo0BkIAAA1kK8AAOolXwEA1Eu+AgCol3wFACy1Lk5wvxEHt7J5OzOvVqEnMvNSZl6PiJsRcW/WM/xOsP6tiNiJg9vzrPTtKgCA3pGvAADqJV8BANRLvgIAqJd8BQAstc5NcC+l7EXEG3Fwpt/1iHiQmSUi3omIq3EQft6oYf33Dq3/bkRciog3SynOIAQAVoZ8BQBQL/kKAKBe8hUAQL3kKwBg2a233YBJqhD0VmZei4itsafuVc8dfv21iJj5jMJRyMrMS3EQqkaPC1YAwEqSrwAA6iVfAQDUS74CAKiXfAUALLNOTnAfqYLQwkJPKeV+RNxvu04AgKbIVwAA9ZKvAADqJV8BANRLvgIAltGg7QYAAAAAAAAAAAAAAECECe4AAAAAAAAAAAAAAHSECe4AAAAAAAAAAAAAAHSCCe78/9n79xjJsvw+8PudyHr1dPdMZ3fOzgwf88gmxeFDlGayKXKlXUumsiTb0Jpea6t3aC9J2StlAYJBw1hgq0wD+keCkCVAC3i9MLYKEAwIAkZbBRgwYAgCMm0t1pYESlWztiiKHJKVasIjcqjJrhzOq1+VefxH3MiMjI6MjMi8cZ+fD3BQlfG659wbec83zz33XgAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARjDBHQAAAAAAAAAAAACARrhSdwXopq/89n7+lb/zz2IwSLEySDE4LoMYrMTw31PPDR9bWRm+JqVU/H/sNcXPg5RisDJ6f2wOBr+fjz97cPK+488s/h2k4rGUYiUVz6WIwSANl1d89vHrY1TPiM+sfiQGKeL3vvXuqfcNxt43mPjM47ofP5ciRcQgHUWKHCkdRcTJ/0/+Lf4fRxEpx+Cl4esG6Wjz4L1v5ZRypDgc+4wcgxj+O3p/RI5BOn5f8XMulncUKV6MlD4e+ei3I3KOiBxxdDTceEdHYz/n4fN58rGj4vHRczPed/xvFP8enVpePipec3QUrx4eRRzliMOjOPr9nOOo+PnoKOJw9O/4Y0fFvxHpjb8cR//0vx7+XDx26vXj7zt+TT71XD46inie46h4Lh8dRT7MkQ+Hj+XDo+FjzyPiKMfR4VHko+L1x+87ec/oufx8+L44jOFjh8PPOioe+8Ojozx8z9Hx+9b+N/+7eO0v/ZXbEfGg7t9nAJpBvpKv5Cv5CoByyVfylXwlXwFQLvlKvpKv5CsAyiVfyVfylXwFfWaCO0vxxR9eq7sKpfrI1ZVIqe5alOlKRLxcdyVKlV774bqrUKobP/rjERHrddcDgOaQr5pOvmo6+QqASfJV08lXTSdfATBJvmo6+arp5CsAJslXTSdfNZ18Be02qLsCAAAAAAAAAAAAAAAQYYI7AAAAAAAAAAAAAAANcaXuCgDAslz9/h9c+dRf+xtvVbbAlcGNfPXqJyMi0gcffD0Oj96tbNk3Xv304If/59+pbHkRK0c5XoiIGKR4JyIOK1vytY/eqLCdAMApN1bS4MfeqmppOeLG0WF8MiJisBJfTxHV5at44dPpyh+tLl/lWMk5vxARkVJ6J1KF+SpuyFcAUJsbKyl9/q2qlpZz3Dg6KvLVIL6eUsX5Kv1YpeNXp/JVleNX8hUA1OjGShr86FtVLS3nNJGvcrX5avDj8hUAsGR9ylfXP71y9EOV5ascsZKPinw1SO+kKvNVvnqj6TPIG149ALi4lVdeWf3Yf/gfVba8/f39zYjYKX78hbW1td2qlv3B7/zG/r/9z//qa5U19rQXqlzY6l/93+9/ZPP1mpoKAH13dTXS91W2tLdrzFeR/3A/v/eVWvJVrjhfpas/uR8rq3U0FQCIq6sRn6psaW+/XWO+im/v5/zr9eSrXHG+Sp/fj/hYHU0FAOLqakSF41d156vDf9mP8avBj+1HeqWOpgIAPcpX7/76r+2/9Z/c6sX8q0/9tb+xX+W8uosY1F0Buum/+W+f1l2FUr39vffj7e99UHc1SvRu5Pxv665EqfLeP6q7CqX69s4/jIiocPADgKaTr5pOvmo6+QqASfJV08lXTSdfATBJvmo6+arp5CsAJslXTSdfNZ18Be1mgjtL8Xf+wW/WXYVSvf299+PZ996vuxoleicifq/uSpQqf/Uf1F2FUn3z//owQsACYIx81XTyVdPJVwBMkq+aTr5qOvkKgEnyVdPJV00nXwEwSb5qOvmq6eQraDcT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3AEAAAAAAAAAAAAAaAQT3FmK7b/y03VXoVQ/8LEX4gc+dqPuapTo5Ujp9borUar0J7bqrkKpPv7L/1lERLcaBcClyFdNJ181nXwFwCT5qunkq6aTrwCYJF81nXzVdPIVAJPkq6aTr5pOvoJ2u1J3BeimL/7wWt1VKNVHrq5ESnXXokxXIuLluitRqvTaD9ddhVLd+NEfj4hYr7seADSHfNV08lXTyVcATJKvmk6+ajr5CoBJ8lXTyVdNJ18BMEm+ajr5qunkK2g3V3AHAAAAAAAAAAAAAKAROn0F95TSZvHfg5zzk7rrAwDQdvIVAEC55CsAgHLJVwAA5ZKvAIA6dPIK7iml7ZTSs4jYKcrjlNKzlNL2lNfm8ccnfwYAQL4CACibfAUAUC75CgCgXPIVAFCnzk1wTyk9jog7EfEoIm7mnFNE3Cx+vpNSun/OR+xGxF7d7QAAaAr5CgCgXPIVAEC55CsAgHLJVwBA3a7UXYEyFWf+bUTE7Zzzg9HjOefdiNhNKe1FxHZK6cn48+NyzjfrbkdH3PuH2/+Tu8v68P39/Z2I2IyI3bW1tSq22WZExGdXP7JbwbKmtvWw3LauR8RmGvzZk9+DlapbNpROt3U7hn8gxdraWlrwo7ZX/sLfXtp3rmxztHUr/LEHNIB81SjyVcltla/OJV8BLIF81SjyVcltla/OJV8BLIF81SjyVcltla/OJV8BLIF81SjyVcltla/OJV8BjdG1K7hvRcTujPB0LyKeRLFTmyaltJNS2qq7IR3Qmo5uTrtF6Yq9iHhw6U9plq595x5Et75zQHvJV83Rtb5Ovmq+rn3n5CugKeSr5uhaXydfNV/XvnPyFdAU8lVzdK2vk6+ar2vfOfkKaAr5qjm61tfJV83Xte+cfAUt1pkJ7imlzYhYjeGtcGbZjYj1lNL6Gc9vxvDsKgCAXpOvAADKJV8BAJRLvgIAKJd8BQA0xZW6K7AE591SYjeGZxCuz/Hac+3v729GxE7djZ6wub+/n+uuhLZq62Voazf1qa0RsbO/v1/Zwl5Oi95Vqr2Ort347BnfpXtra2tdO5u4KeSrfvXD2tpR2tpNfWprVJyvXl29En1JWIdH6bMHB/JVxeSrfvXD2tpR2tpNfWprVJ2vXr0WfRnCOjyUr2ogX/WrH9bWjtLWbupTW6PyfHW1P+NXh/HZg2/KVxWTr/rVD2trR2lrN/WprVFxvnqxL4NXEZFvXG/8/KvOXMEdAAAAAAAAAAAAAIB26+IV3FfPeX6j+PegpOXtRcS9uhtd+I8j4rMR8VZE/Dd1V0ZbtXVRKaU/nXP+meLHpvxeaau2LtLWz+Scv1T8/+/nnH+3smXn/MsR8ULd66CSth4+/8OI+K+nPLVbd906TL7qQT+srd3Us35YWzuoznw1SOmXc1/yVcryVfXkqx70w9raTT3rh7W1g2rNV4P45Zz7kq9CvqqefNWDflhbu6ln/bC2dlDt41d9yVcD+aoG8lUP+mFt7aae9cPa2kG1zr+K6M38q3h+2Ph81ZkJ7jnn3ZTSQURsRsSjGS/djIi9nPOTMpa7tra2FxGNuBz//v7+Rgw74t9pyi0CtFVbF2zrdkT8TESEtnZHz9q6GRFfiojIOf+dtbW1yjr8D775jb8cPQlY6fD5Qde/S00hX/WuH9bWDupZP6ytHVRnvor8h73JV4MU8lVF5Kve9cPa2kE964e1tYNqzVfx7f7kq0GWryoiX/WuH9bWDupZP6ytHSRfVcP4VXXkq971w9raQT3rh7W1g+rMV+/+we/3Jl+l582ffzWouwIlexARWymlzWlPppS24vwABgDACfkKAKBc8hUAQLnkKwCAcslXAEDtujbB/V5EPImIhymlOyml1YiIlNJ6Smk7Iu5HxJOcc6PPOgAAaBD5CgCgXPIVAEC55CsAgHLJVwBA7To1wT3nfBARN2N4huB2RDxLKeWIeBoRd2IYwG7WXU8AgLaQrwAAyiVfAQCUS74CACiXfAUANMGVuitQtiJk3U4p3Y2IjbGnnhTPTb4+zfqZxRS3IdrLOe8u+L6NiLhV/LiXc35QczsuXJ+zbtEUEbHoeqm67mW8v0ltqntbnOfv/t2/G5/5zGfiL/7Fv7j0dQFwGfJVveSr+vt0+erU++QrgBLIV/WSr+rv0+WrU++TrwBKIF/VS76qv0+Xr069T74CKIF8VS/5qv4+Xb469T75CqhF5ya4jxRhqvYdaA9tR8SDWGDdF7cvujPx2FZE3JwWipethPrszPr4Jte9aduihDrVti3m8df/+l+PX/zFX5w7YDVx+wD9Il/VRr6Sr5rUJvkKoETyVW3kK/mqSW2SrwBKJF/VRr6Sr5rUJvkKoETyVW3kK/mqSW2Sr4BaDOquAN2QUtpIKT2MiNUF37cZww7jUUS8WpzBOTr7884in1VSOy5Vn7Ez1ka3Y5osTa97Y7bFZetU57aYo10bf/7P//mf++Y3v1nJugCgneSrU++PkK9qb5N8BUDbyVen3h8hX9XeJvkKgLaTr069P0K+qr1N8hUAbSdfnXp/hHxVe5vkK6BOnb2CO9VJKeVLvH2r+Pf26AyonPO9ojPZimEHUqWy6rNbwy1YLlv3pm2LsupUx7Y40+j35Stf+Uod6wKAlpCvppKvmtGmCPkKgBaSr6aSr5rRpgj5CoAWkq+mkq+a0aYI+QqAFpKvppKvmtGmCPkKqIEruFOG0RlZF9nBb8awA5y8vcduRKyOnQVWlcvWZ/T8k4rrXVbdm7QtLlunOrfFLDcj4ubP//zP/7cVrgsA2ke+Ov3+CPmqCW2SrwBoM/nq9Psj5KsmtEm+AqDN5KvT74+Qr5rQJvkKgDaTr06/P0K+akKb5CugNia4c2k559EZWhfpyFbPeN/osY2Km1NWfW6llB6mlHZSSvcr6vwuW/embYuy6lTHtjjT6PdlY2Pj6zWsCwBaQr6aSr5qRpsi5CsAWki+mkq+akabIuQrAFpIvppKvmpGmyLkKwBaSL6aSr5qRpsi5CugBia4U5s5O7rVltVn1MndH3vtrYjYSSltxZJctu5N2xYl1amWbdHQdQFATzStz5CvLt32RrUp5CsAeqhpfYZ8dem2N6pNIV8B0ENN6zPkq0u3vVFtCvkKgB5qWp8hX1267Y1qU8hXQI1McIdyrUfEXkS8kXO+mXO+GRGvx/Asr/sppfW6K9gjtgUAdIM+vTlsCwDoBn16c9gWANAN+vTmsC0AoBv06c1hWwC1McEdSpRzfr0oT8YeO4iIe8WPrTpzrc1sCwDoBn16c9gWANAN+vTmsC0AoBv06c1hWwBAN+jTm8O2AOpkgjunpJQ2U0p5jjLPLTtmyjnvFv+ddWuPvaras+T6jD57KWetXbbuVWyLqts0w1K3RcvWBQAVkK+WVh/5quI2zSBfAVAp+Wpp9ZGvKm7TDPIVAJWSr5ZWH/mq4jbNIF8BUCn5amn1ka8qbtMM8hWwdFfqrgCN8yQibs75ujLsxfSObnPs+Srbc+H6pJRWI2IjIp4UZ6qd1d5luey6XPa2qKxNDdgWjVkXADSCfCVfXfT9jWlTA7ZFY9YFAI0gX8lXF31/Y9rUgG3RmHUBQCPIV/LVRd/fmDY1YFs0Zl0A0AjylXx10fc3pk0N2BaNWRdAPUxw55SiM9q99AfNbzcitlJK6znn8Q5iMyIOxs6cqqo9l6nPekTsRMSDiLg98dyt4t+ygmnZdS/j/U1qU93boknrAoCayVfyVcP6b/nq8usCgJrJV/JVw/pv+ery6wKAmslX8lXD+m/56vLrAoCayVfyVcP6b/nq8usCqMGg7grQD2O3qtmeeOpe8e/D4qyvSCndieHZXw9qqOrc9ZlsU875SZx0gndSSqtF2YqI7RiezfaoiXVf9P0VmqtODdwWl9Ki7QNAjeQr+WqZbWrgtriUFm0fAGokX8lXy2xTA7fFpbRo+wBQI/lKvlpmmxq4LS6lRdsHgBrJV/LVMtvUwG1xKS3aPsAZXMGdWuWc91JKt2PY6T1LKY2eepBzvtvC+rwZEQ+L9493jrvFc42te9O2RQl1qm1bNHBdANAjTesz5KvmbIsS6iRfAdBLTesz5KvmbIsS6iRfAdBLTesz5KvmbIsS6iRfAdBLTesz5KvmbIsS6iRfAbUxwZ3SFLfoSBd47kFK6VEMb12yGhG7xRlgdbVjrvpMa1NxS56bKaWNGN66JKpsz2Xqvsj7qzRPnZq4Lc7zS7/0S7/7S7/0S2e1uTXbB4Dlkq/q79Plq1OPyVcAtJ58VX+fLl+deky+AqD15Kv6+3T56tRj8hUArSdf1d+ny1enHpOvgNqY4E4jFJ1hY27zcdn6FJ1eLR1fCXVv1La4bJ3q3BZNWxcA9EvT+gz5qjnb4rJ1kq8A6Kum9RnyVXO2xWXrJF8B0FdN6zPkq+Zsi8vWSb4CoK+a1mfIV83ZFpetk3wF1GFQdwUAAAAAAAAAAAAAACDCBHcAAAAAAAAAAAAAABrCBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrhSt0VAAAub+W1f+eFj/7CX627GpUYvPSy/AIALF+68UK68vm6a1FRW6/KVwBABa6/kNLrdVeiIvIVAFCF6y+kwQ/VXYlqpCvyFQCwdFc/8ckXPv7L/1nd1ajEykc/2vh81fgKAgDnG6y+9nMv/4e/UNlyjwRbAACAAElEQVTy3nvvvS+8++67fysi4saNG//59evX//sKm3tQ4bIAgN66/nNxpboJWPIVANB9134u4jOVLU2+AgC679rPRfpsZUuTrwCArltZ+/jPvfa/+iuVLU++ms0EdwDoht0qF/btb3/7+P8ffPDBf3/9+vVKlw8AUAH5CgCgXPIVAEC55CsAgHLJVw0yqLsCAAAAAAAAAAAAAAAQYYI7AAAAAAAAAAAAAAANYYI7AAAAAAAAAAAAAACNcKXuClCqJxP/dpm2dtNeROzWXQlt1dZLOBhr60HdldFWKEWf+mFt7aY+9cPa2k19yhx9aiv91qd+WFu7qU/9sLZ2U58yR5/aSr/1qR/W1m7qUz+srd3Up8zRp7bSb33qh7W1m/rUD2trN/Upc/SprQtLOee66wAAAAAAAAAAAAAAADGouwIAAAAAAAAAAAAAABBhgjsAAAAAAAAAAAAAAA1hgjsAAAAAAAAAAAAAAI1ggjsAAAAAAAAAAAAAAI1ggjsAAAAAAAAAAAAAAI1ggjsAAAAAAAAAAAAAAI1ggjsAAAAAAAAAAAAAAI1ggjsAAAAAAAAAAAAAAI1ggjsAAAAAAAAAAAAAAI1ggjs0XEppve46AExj/wS0lf0X0FT2T0Bb2X8BTWX/BLSV/RfQVPZPQFvZfwFNZf90NhPcocFSStsR8TiltFF3XQDG2T8BbWX/BTSV/RPQVvZfQFPZPwFtZf8FNJX9E9BW9l9AU9k/zWaCO62UUtpIKW3VXY8K3IuIvYjYsRODZkspbaWUdopyJ6W0WnedluxeRDyK4T4K6AD5Cmga+QpoO/kKaBr5Cmg7+QpoGvkKaDv5Cmga+YpxJrjTVhsRcb/YiT1OKd2qu0LLkHM+iIib0aOQlVJaLbbrdkpps+76UI4ub9eibY8j4n7x0GpEbEfEnbrrtqT2rkcM908559vFY73YP0EPyFcd1eV+uM+6vF3lK/kKOkS+6qgu98N91uXtKl/JV9Ah8lVHdbkf7rMub1f5Sr6CDpGvOqrL/XCfdXm7ylfy1TQmuLdYT86gmyrn/CAi7sZwJxYRsVt3nZbsXvFvp3diRduexrBjulW0tzOd8ahjGm9vSulpSikXHVQnzzjr+naNiJ3i3zdyzjdzzm8U/79bd8XKNuO2OKvR8f0T/SFfyVdd0/V+WL7q5nYN+SpCvqJD5Cv5qmu63g/LV93criFfRchXdIh8JV91Tdf7Yfmqm9s15KsI+YoOka/kq67pej8sX3Vzu4Z8FSFffYgJ7i1VhKv7KaX7l/6w9tqM4Zl1GzHcaXfOWMd0v2hr13diDyPiUc751Zzz6xHxes65E+F5smMqwtZORDyJYYDeiOG27WLI6vJ2vRPDbfdmzvnJ6PHx/3fMh27b1cczneku+Soi5Ksu6nI/LF91c7vKV/IVHSJfRYR81UVd7oflq25uV/lKvqJD5KuIkK+6qMv9sHzVze0qX8lXdIh8FRHyVRd1uR+Wr7q5XeUr+WoqE9xbqjiD7kFEbPU4ZN0udta3Yxg2O3VGZdHR7sRJx/RGRLweHd2JFWeUrcfwzNCIiMg574093/btO9kxbUXEbs75zeJMs9eL17U6ZE05S7Lr23Uzhr+je2e9oLiFzv0unDV5VpgSsugK+Soi5KtO7b960A/LV4WObVf5KuQrukO+igj5qlP7rx70w/JVoWPbVb4K+YrukK8iQr7q1P6rB/2wfFXo2HaVr0K+ojvkq4iQrzq1/+pBPyxfFTq2XeWrkK+mMcG9xXLOt2OBkNXmnfZ4G1JKWymlW6MdWhE2uxiybsXwjMHR7XFGHVPXd2If+p6OnTHb2g5qsgOKYeh4NOX5iJaGrBm3T4no6HaNkzOZz3MrhmcCt56QRdfJV/JVR/dfneyH5atubteQr+QrOke+kq86uv/qZD8sX3Vzu4Z8JV/ROfKVfNXR/Vcn+2H5qpvbNeQr+YrOka/kq47uvzrZD8tX3dyuIV/JV2cwwb3l5g1ZxY7s6eTZPW0ycbuYh8XOfLQePhSyWr7TjjjpkA7GHyx2Ym9GB26XUwTm0XYa3VLkQyG52L4Rw86stSY6oFsxvLXKtOcj2hmy7sUwNI4Hjq5v193z6l9s13sRsd6m39fi93M7pfQ0pZSL8jiltCVk0XXy1fF6kK9aSL6Sr4r/tnm7ylfyFR0kXx2vB/mqheQr+ar4b5u3q3wlX9FB8tXxepCvWki+kq+K/7Z5u8pX8hUdJF8drwf5qoXkK/mq+G+bt6t8JV9NZYJ7B5wXskZn6cQ5t3FosiIY7sRw5/1qRNwsbisyvh7GQ9YoiLXZ6OyyO5NPjG3HUUfdVvej6JzGOqE7k2eCjgWNVn5/x411QE9i+Ds7K2TdWfDjazEKyTnng2J/FCmlnZTSRg+2625EbMwRJEZBsxWheewWXXeKNt6Lk7OZ76eUHhf/Py9ktXn/RM/JV8frQb5qH/lKvopo93aVr+QrOkq+Ol4P8lX7yFfyVUS7t6t8JV/RUfLV8XqQr9pHvpKvItq9XeUr+YqOkq+O14N81T7ylXwV0e7tKl/JV9PlnJWOlBh2Vjki7o89tjX5WBtLRGxHxNOJxzaLNu9ExK2JNj+MiPW6611Cux9GxLOI2Jh4fLXYrht117GE7boz8djjom3bMbyNzEbx2OOIWK27ziW2fbVo07M2b8ex/c7WrLZ1YbsWdd4u9jGrY219dl47xvbFrdgvjW2bjSnP3Rlvc1e+y4oy4/dBvsryVZuKfNX+Pkm+kq+68l1WlBm/D/JVlq/aVOSr9vdJ8pV81ZXvsqLM+H2Qr7J81aYiX7W/T5Kv5KuufJcVZcbvg3yV5as2Ffmq/X2SfCVfdeW7XPo6rLsCylxf9K0FXnscssZ+obfrbkMJ6+B+RDwu/r9a7ORyDG+Z87RNO64ZbdwYa8u0HdeHOqa661xCm29FxLMpj4+2bx5bH63ccU/brmPPtb5jGmvbPCGrtdt1Vt2L7/GHtu/Eung6+cdEU8tY37Ex4zWbxWseduW7rPSvyFfylXzVnn54nu069lzr+yT5Sr7qyndZ6V+Rr+Qr+ao9/fA823Xsudb3SfKVfNWV77LSvyJfyVfyVXv64Xm269hzre+T5Cv5qivfZaV/Rb6Sr+Sr9vTD82zXseda3yfJV/JVV77Lpa/HuiugzP1Fn/sMwLGQdWqH1/QSs8++Gf0yj3bmz0Zti5Oz6VobJIvg9CyGZwxux4fPzmllxxQRm5PbOE7OwNoo2p1ndEqbbWjnRbbrRDtb2zEV23LUxnlCVuu269g+9U6xTe+Mfg8n1sNo33Rn9AdfEb5G66AtZ0o+nCcMju2XRm0dbe/W7ouV/hT56vg5+Uq+al2Rr+Qr+UpRmlnkq+Pn5Cv5qnVFvpKv5CtFaWaRr46fk6/kq9YV+Uq+kq8UpZlFvjp+Tr6Sr1pX5Cv5Sr7qb6m9AspCv9yLhqw2havxMx/Xz3jNreIX/86UDirH2G1ymlomA8fY49tRnIkz1qZTtw8pduybZ31G08rYNt0Ye2wrhrc0yhNldMZrazrdOdfBudt14vFWdkzFHz7bMeftctpUprVpbNvm8d/H4o+Gad/vnWjRGc7zfhfH/kBq5fdWUeSr49fIV/JVq4p8JV/JV4rS3CJfHb9GvpKvWlXkK/lKvlKU5hb56vg18pV81aoiX8lX8pWiNLfIV8evka/kq1YV+Uq+kq/6W2qvgLLwL/m5IStacpbKlF/SZxMd7vp5bRzvsOpuxwLbcDxwrBaPb08GxLM64zaUsbbemvGajSI0j9/maLxDakWQLNqy3YftOqP9o7MIV6NDIatoy7OY8sdqnJwxuDnluY3iD8HtNrV3rP47MeftfEbhuu46K8olf8/lq4k2ylfNLPJVN7frjPbLVx/+bstXitKCIl9Nb6N81cwiX3Vzu85ov3z14e+2fKUoLSjy1fQ2ylfNLPJVN7frjPbLVx/+bstXitKCIl9Nb6N81cwiX3Vzu85ov3z14e+2fNXzUnsFlA99WWfdJubckDW2o2vN2SpjbXtW7JjGb/HzoaAVJ7cdGe2wnzZ9J3ZW4BjreKaehdPGznh8W875+uOz7IrtvxUtOBt0yvdx8jYwndquc6yH4472nJDVis44Tm7LNXUbFY8/rbueS2r7qVvfnPNaZxAqrSjylXx1xvOt6Yflq25u1znWg3zVkSJfKV0s8pV8dcbzremH5atubtc51oN81ZEiXyldLPKVfHXG863ph+Wrbm7XOdaDfNWRIl8pXSzylXx1xvOt6Yflq25u1znWg3zVkSJflbQe666AcuqLOs9tYs4MWXFyRsvct9JpShnbmW0VP69PBK1TZ5TFya1WtpveQZ0XOOKcs6va1DHNamsRnqY9fqftHVXRtrNCVuu369i2nbVvOj6LcGJf1ZpbdZ3Rpg+FrEX/iGhbiZOzuh+e87rRfrs1fxAp/SzylXzV9n5YvpKv5Kv2F/lK6VqRr+SrtvfD8pV8JV+1v8hXSteKfCVftb0flq/kK/mq/UW+UrpW5Cv5qu39sHwlX8lX7S/yVUnrse4KKB/6Qp97m5hpIavN4WqsDTuTHW2cnMkyNWg1vcwbOM7rjNtQ5mjrs5h+Nt1oJ93ooDxH+xcOWW0pY/uX8/ZNp26X0sWQ1fVwNdbu0b73/hnPj77bc91KR1Fq/C7LV/JVq/th+Uq+kq+6U+QrpStFvpKv2t4Py1fylXzVnSJfKV0p8pV81fZ+WL6Sr+Sr7hT5SulKka/kq7b3w/KVfCVfdafIVyWsw7oroJz6wi5ym5jxsw1HO4BWnIk0o/2TZxHeGf0cHz6j8E7d9V1ke0557kOBo82dccy4nUjx3LNZ4b94b2uC84x2dDlkje9zdor/P4wPn9n7LD58tl1r//Aba1ee3LZdL2Pb/HGxDlaLslWE6dbdjk3pZ5Gv5Ku29sPy1Ye2q3x1+n3yVQuLfKV0pchX8lVb+2H56kPbVb46/T75qoVFvlK6UuQr+aqt/bB89aHtKl+dfp981cIiXyldKfKVfNXWfli++tB2la9Ov0++amGRry65/uqugHLqy7zobWLGn2vtGToT62Cn+MWdeuZR8cvd+I74ooGjzZ1xTLmdyNh6uH/e+qq7/iWuhz6ErK1i2+5M7pti4izCNpRi+2wXdc9j3+OtsddsnfU73eUSEbcm1suoPOzTelDaXeQr+arN/bB8ddwW+Uq+6kyRr5QuFPlKvmpzPyxfHbdFvpKvOlPkK6ULRb6Sr9rcD8tXx22Rr+SrzhT5SulCka/kqzb3w/LVcVvkK/mqM0W+usS6q7sCyoe+zAvdJqbY4XUiXI39MnciNF40cIx1xq3qpKa0+c6sthav7WRndU7Iat12nWjbqT9+pgSt0ZmzrdiuY9tldHbkdlEeT/n97WXIGtvOd4p14KxBpXVFvpKv2twPy1fHbZOvWrJd5au515N8pbS6yFfyVZv7YfnquG3yVUu2q3w193qSr5RWF/lKvmpzPyxfHbdNvmrJdpWv5l5P8pXS6iJfyVdt7oflq+O2yVct2a7y1dzrSb5adJ3VXQFl6pd4fOfV6tvEXHAdPJ0MmW0tfQwcY20+r63nnlnY5jItZHWlxJQzfCeCVmv+QCp+5x7H9FtZ3Sm2n5ClKC0v8pV81fZ9tnx13Eb5qgF1naMt8pWi9KDIV/JV2/fZ8tVxG+WrBtR1jrbIV4rSgyJfyVdt32fLV8dtlK8aUNc52iJfKUoPinwlX7V9ny1fHbdRvmpAXedoi3ylLOe7VXcFlKm/8J24Tcwl2r/Vph30Au3pTeCY1Ql1ra3nrIfxkNWps65m7J82I+JW3fVb8Hu6MeM1oz96H87z/VYUpblFvpKv2l7kq+O2ylcNLvKVovSryFfyVduLfHXcVvmqwUW+UpR+FflKvmp7ka+O2ypfNbjIV4rSryJfyVdtL/LVcVvlqwYX+UpZZknFl4UGSSndioiHxY+3c84P6q5TDevgaUQc5JzfqLsuJbVnK4Yd0pOIuJlzPpjy3IOc8+2667rMNo89di/nfLfuOla0HjZi2IF37vc4pXQ/hmGjlfuplNLDGAakm+e8bjuGZxO+nnPeKx4b3SqmF99j6AL5Sr7qAvnqeD3IVw0lX0G/yFfyVRfIV8frQb5qKPkK+kW+kq+6QL46Xg/yVUPJV9Av8pV81QXy1fF6kK8aSr5imUxwb6giYETO+fW661JT+0cd8Rs55yd116fkNvUmcEy0+VFEbHe1rX3V5pCVUnocEbvnfR9TSusxPKvbdxdaTr6Sr7pAvuo++QpoE/lKvuoC+ar75CugTeQr+aoL5Kvuk6+ANpGv5KsukK+6T76C6a7UXQHOdC8i7qeUttq20ypDzvlBSim6Eq7G2xTDwLGTUup84Jho80a0sBNmtpzz7WIbb9Rdlws4mKfeOee9lNJe3ZUFSiFfyVetJ191n3wFtIx8JV+1nnzVffIV0DLylXzVevJV98lXQMvIV/JV68lX3SdfwXSu4N5gXbtNDENjZ9VF9CRwFG2OPrSV9ph265sZr83R4T+GoE/kq26Sr6AZ5CvoJ/mqm+QraAb5CvpJvuom+QqaQb6CfpKvukm+gmaQr1gmE9wbrIu3iWFI4ID6jd365lHO+c0Zr9uMiJ2IeDPn/KjuegOXI191l3wF9ZOvoJ/kq+6Sr6B+8hX0k3zVXfIV1E++gn6Sr7pLvoL6yVcskwnuDdfXW+QAVGHsLMIHOefbU55fjWG4Osg536y7vkA55CuA5ZGvoJ/kK4Dlka+gn+QrgOWRr6Cf5CuA5ZGvWBYT3AHotZTS/YjYiognEfEgIkZnCd6KYfhajeGZ3HsXWwIAQL/IVwAA5ZKvAADKJV8BAJRLvmIZTHAHoPdSSrciYjsi1ieeehQRt3POB3XXEQCgTeQrAIByyVcAAOWSrwAAyiVfUTYT3AGgkFLajIiNiDiIiF1nDQIAXI58BQBQLvkKAKBc8hUAQLnkK8pigjsAAAAAAAAAAAAAAI0wqLsCAAAAAAAAAAAAAAAQYYI7AAAAAAAAAAAAAAANYYI7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNYII7AAAAAAAAAAAAAACNcKXuCnRdSmk9ItYjYiMi9iLiIOe8W2N9NiJiNSI2I2K3qM+TutcTAEBTyEsAAAAA9E1KaTOGY2LrEfEkIvZyznt11wsAoK3kq/mM5tbVOZ8OgGZyBfclSSltpZSeRsTTiNiJiO2IeBgROymlZyml+0UHfdb7d1JK+ZzytPic1XPqsppS2k4pPYuIx0V97hT/Pi4+Z6vudVaXYluN1vezlNLDImRW8nkppfVi+8wqW2e8d7RtH48tb+e87Vks836x7ed+35TPeZZS2p7jdaUsDwDGNTkvFXlgvB6r8763i8rOW2V+ZvH9yHPktfEs87j4vpz3vVr4fWPfxfHv9zzvk7cAKF1KabPoV3bqrkuT69iEOpTYlgtlka7qYI6dOyMuO8sW6+G8MdHjUs4WBViOOceoxsvm2HvzefvzOetwobGoYt99P6WUYzgO9jCGxzR3IuJpsR/fPOO9c9d9LC/lCjcNNZn3+GFX9TlDTnzOvMeRpx3vXrh987QNaA/5qpn5amy7lLKvLdbVThRz6+rID00Y15OdmpGdqhpHu8yYWIm5qdffOVom56yUWGJ45t3jiMhjZWesPB17/FlE3Drjc3YmPmNWeRbDM9nmqc/TifqMf879utdfDdvr4Yz1ulXF58Vw8tx523hnyvs2im1/1nsenrG8rXOW9XDOtt4qXr99zutKWZ6iKIrSzxLDAZ/taVmnyXlpSia4U/e6rHEblpq3yvzMsTyTI2LzjNfMyjKPI2K1rPfNke+eRcTGgsuStxRFUZQLlxje0WbquERTShPqWEcdZuXkS3zmhbJIV0vHc+zMjFhFll3w77lc9/dBURRlVll0nza+7z5vf75AHRYeiyrGxJ5N7ONHGePhxHNbU94/d93H8lKue3spS/99mOv4YVdLnzPkRb4Hc2TIudo3T9sURWlXka+ama/Gtksp+9qIuD82ZrBz0b7yknU4c1xvGeNvU5YhOzUgO1U5jnbRMbEl5KZefueU9hVXcC9RcdbNTgx3KBER9yLi1ZzzzbHyekTcjOGtZ1Yj4ryzaO7lnNNkiYhXI+Ju8ZrVGHb604zqcxARt3POr4/Xp/icB8Vrt1JKt+pej1UpzkS6NbZuRut1tD7up5Q2Kvi80dlauzH8zkwrj6a872Hx3icRcXPsu3G7qMOtKWdyrccwfEXxma9P+T7dOu8srYnPmfd1F14eAL12pyjrM17TqLxUZMLRa0a3GexNxppYF6XmrTI/s8gp9895zebYa0bZPsUwzx/E8HuzXdb74iTf7UXEm2Pf5TeLx1aL10y2Q94CYFn24uxxCeo1T05e1MJZpKs6kGMvnBErzLKP4uyx0FHZHXstQBtMHaOaUnYvv6gTlxiLGu27DyLijZzzGznnu0V5MyJej9P9VJm5gw6a9/hhV/U5Q874nPNetxPD/dBuDPdDo+XdG2vfuVdbPa9tQKvJV902av/t4rjsg0t9WvmWMf52THZqRnaqYRxt4TGxknNTb79ztFTdM+y7VGK4A5jrakZx+kqhz+Lss3XOO6t5tMw85TMWqc/o7KWnda/HirbV+FmT086KHK3/ec9Cv/DnjT23yBn2m2PbfdoVbe9M255jj++c8bnbZ30PimVux4fPJNueUc8LL09RFEVRcp59pYKm5qU4OUv7WZy+cszSzu5vYik7b5X9mWOvfTbjO/b0rO/YRB5bvez74vTZ/dPy3fq0tstbiqIoSt9L9PcK7qVenfCiWaSLpSM59jJjgJVl2TnX2YfGzhVFUZpW5h2jOuO9l+7TLzIWVexnR6+7NWf77l+07uEK7p0tFzl+2MUiQ17oOPLoqr2Pz1nezmXbpihK+4p81cx8FeVfwb3Uz7tgHWZdwb3U8bex5clODcpOVY+jLdCO4zGxy+Qm3zml7cUV3EtSnOFyp/jxXs75yazX55wPYnj1moMY7pjuxMWMX71m8qylreLfB+fVJ07O5llf9OynlroVxRWF8vQzAEfr41ZxZuYyP2/0817Mb3TG1W7Oedr7RmdyrZ/xvrO+D2e9b/TeO2OfsUg9L7I8AChL1Xlp9JmPcs6PYpj3Ivp3Ffey81Zpn1mcYb8Zw7P1V894zUYMM8rB2Ocey8OrgTyKYZ5Zv+z7xv7/aFq+Kx4bfZfHv3/yFgAXklLaSCltppS2zruyy5yft5lSulX8uzrx3PrY83ONO6WUVsc/s4S23lpk+SWsj4WXWUc9x1w0i3RRq3Ns4UIZsYYsO8v9oo23i7F0AM52kbGo4/1x8Z5ZRv1Jo8cWLpi/jvPwBa4OeaHsVlVOnMjTy8xvFzl+2EW9zZBj773oceSzrtY7at/mWVc4XqBtAIvqdb4aG8tbeNywzPGtyfHBMsYwG0B2GmpSdqp6HO0808bELpObfOdoNRPcyzMKN3s553vzvKEY2B/teC464Wnq4H5KabTTjpiyE51SlydxcpuLc6WUHqaU8hm339gunsvTwkVK6Wnx3EUn9ZdhFKKm3qYon7590TyB6zKfN/r5vEl140bb/axO/KzHnxR1vMjtmR7E8BYqozLPrYEuszwAeiyltJNSymMP7ZyVLeZQWV4q/mAc9e2jvnI0iLVQ3pO3lvOZxWDDnRieXHg3zjbaXrtnTajJOb+Zh7dMfFLC+0b1nXXS4+jzxgcm5C0AFlIcDHoawzsL7sRwwHwnpfQspbQ15bU5pbRz1uPFQaunxWc9LP59WhwAW00pPYzhlWxGzz8u3jc5Cf447xX1OPWZ0+o3R1tvjbX14djyny7rgFhxAPDxlGXunHUwZpF6lpyTx100i5y1HtqcZdueYyMunhGrzrJTFX+r3YqTiQQAnKGMsag5csTo+NB5/U+V7R7Po6tFXl0kf22nlJ7FWB4ee89GWcsroZ4XyrNFBhu179RyRjmsxM1xkeOHZ9Vbhiz5MyvKkBEX+x6McuHUDFnk0VFdpm3zRdoGMLe+5qui3qsppftxMi43Gjd8et5k9QXHt7aLPDJ6fGc8A4zVYzzP7MSMMcKxrLAzo45z5aAljr9FlJSdWp6bIpqVnaoeRzvTjDGxy+Sm0vI61OFK3RXokNGOb9EB990Y/uG1nlJaP+Nq3LOM75TGd5bHO+15r3CTc14kOO3GcIc6rfPenPj/cQdQBMHjK/os2NYyjeowa93sFvXfiPM7sQt93pSBrq2Jz3p0xnfiUQxvH7KRUtqc6IQjTk64OPX4HNv4zLPSinoc12We4HaZ5QHQe6O+YbyvOIjZfe1ZqsxLoz9k98b+UN2NYd+8kVLamPcP2JC3Sv/MInvdL368nXM+SCmd9TnzTNIp8313o7iqwIzXfCg7yVsALKI4EDU6yDN+ReVR33k/pXSwwITS9eLz9mLsCjjF49tRZKAYDpqP7mK4FSe3Rb095TNvFa85GHvf6DPvp5RW57m4RDHGMur3Rwcpxuu3k1J6s+TJs6vF+lgdWx8z23yBepaZk8ddKIvM0OYs2/Yce5mMWGmWnaZo63axrm4HAOe50FhUznk3pTTKZ/dTSrenHGsavfbU8aGGGeWv9Zg/f23HyZ21x/PX6D07KaWzJqEsvLxL1PNCeXaifY9iuO02iuU8LHsDXOT44QwyZImfWWGGLPt7MGtdXKhtAAvqc77aidMX6RxdefpW8dxZFxVbNLfsFa/ZKNbXaHxrtE4exkm/82js8fExwkXGMBe1rPG3MvvMNuemiAZlpxrG0aYqcUzsVG6qIKfBUpngXp7RL/9CO60i4Ix+XF/k/cUOZ3Qm1t4ZV81Z1kSWUcexMT4xv9jZjp/lNHkW1fF6usBk/jLNPLNpwjy3Orno5413dk+nLGs7pXRvsjPNOe+llG7HMCA+TCk9iJNguRnDEHMQc5ztWRzcXo2TW5LEPO+7qKqXB0A7jfq+sbPj7541CDRLDXnp+JaFY215NDagdWuB5clb5X/mnRiur3sLfJ+eFN+jrTgZ1DyI4Ta+N2MdL/S+8058KM7Yn+ukWnkLgBnGb6/85vgTxZXWj68QM+fnrU9+VjFGMRrj2IiIN8b7uSIXzbol6lYM89LNsZMQ7xZXbdqK4VjJo1k5Z+xgQMQwR45PiB//rPsppblPdpzDRlH3N8Y/M6W0FycT/m+PPb5wPcvKyZPKzCKFNmfZruTYUxbMiLVl2aJu68VyyvrdBKjK6hyTBZ6UvH+7zFjUgzjZ7+4UmWV05cJFMtLGHBNL573q4qI2Yti/vj5n/hrvB2/nnB+MPXcvTiZ1bcfw6oaXWt4l6nmhPDt2ReuIYZ4en8w0PvGsqWTIcj+z6gy5qL2ijVMnrRXb/ax96qXbBrSGfDXjNSW2eXSS3OgzT51EN3bRjPUp77vI+NaDiHhQXG19M8bGt4pljbb5GxNjDncvOIa5kGWNv5WszbkpopnZ6dgyx9FmmDUmdpncBK02qLsCHXSZnf+0Hc2t4tYnk2V0G+nRDrfSq9kUO9/JM9YiPnybnsk2XfRK92VbpFNb5uetj/17EMOrNoxuQzTqkO5Mu6VMEfjuxfA7cCdObg80mtz+xhwHl7bj5Jbkd4r33VxWMKt6eQD0RiPyUvGH7qhvn7y110K3LoyQt8r+zGJSzZ0YDnTOcxBmc+zfnTjJWHtxcoWtx1NuyXjR982q+504OQB5b1bGk7cAOMesq/PcjeE4w6J9xqmMVWSY0Wc8mNJvjZ5bn/GZb04O4uecb8dJBtiK2bZi2O/unnG197tx0jfPnc/mdHdK3c+64nyd9ZzbIllkrM1tzrJtz7HTPmPejFh3ll0fq9+5d2oAaKCtGO4/Z5XSJiJddiyq6FfejJP+ab1ow8OIeJZSepxS2p5jv789R7u3Y3kWyV+j9fFofHJ78Z6DYn1ERGzOaPciy7vo+y6aE0c5+cFkP1+0t9HjQzJkeZ9ZcYa8qOO7J0ze9bwwvt84/n0so21Aq8hX1eWrUbvuTV4ZvfhbvqrxrdUY9hFnjSE8Gntdb7U8N0U0LDuNq2McbY4xsQvlJugCV3BvvvFbg0yzF8MrDNQxIDG6Xcz4jnH8thxPYnim2OZY/TbH3nuuiTME53F3noNsDTLatpNXJtuNiHtjZzLeSSk9GD+ra+IWg7txElxGt+R5POMWiiPjB5034+RWSW8uaT1WvTwA+qEpeWk0KPNkypnYo1sXrp9168IzyFslGLtl7UVu6Ta6iuz41SPWYzgYuRHDK3C8PuVM+ou+b7zeoyuGjbbpgzkO2shbAMzjzuSVy4v8sujkgPOukHWRq2fNujr7ozi5Ut8s47cw/pDi9vXH+eyC63BqexfMnHXVcy4XzCLjZNlLumSOHbdoRqwry94Ze62rtwNtdOrW72coc/926bGoYvLSo7ErZY5KxEk/PjpGdVZfNE+7J68kWZrJCVhzrrOz8tdeSulJUdepV2ddcHkXfd9Fc+LM9xWPN/3KjjLkJdWYIRd1N04f134Qw+27Xjy+WbRhtfi3zLYB7SFfna20fHXOxP4Ye3zapPpSx7eK/n1Wn27y7gm5aTkqH0eL88fEFs5N0BUmuJfvMmeITdsJPoizByEOau4UduPDt5TeGHtudGuMzYjYHQtEixzs24jFBlpadYZecVDn7oznbxe3MRmd1Tm6Dc7ozPSDGF7VbHx9jt/iZ2YnObrtT/GZo9sGnfu+S7S30uUB0BtNyUvHtxybdveVMWfdqngaeascD4t6X2RQZXRW/qkJgCmlmxHxNE6uOPGgpPeNctKdOBnMOCjqftagYowtQ94CYJYHMez3N2J41ahHURzsuODJgMvoV2YdvJuWjaY5Pmg4I5eNDqiVeVBs0ZxRVz1nukwWmSDLXt5lcuyxC2TEyrNsceBvK1y9HWi3RxVfTbi0saiinzm+MmdxbGozTq7IuZVSijMmYZ17YYni83aWsA4WzbCjLDCrXx1NFCpjeRd930Vz4viFtaYp8wqZyyJDXl5dGXLRzz8o8uXDGG7Dye/6g+LxzTj57pbSNqBV5KszlJyvRn3d3lkXnij226MTAcctbXyrGCsY9f2jCf1NP1mvSnLTElQ5jlYs49wxsQvmJugEE9zLM+rEN2KB23hM3IZi2g5m0Ss/TX7WIreLvVW8fm/OyTO7KaWDGJ6duF6EnM3i/aMrHIzXYaGzwIpl3LxA2+exGycHdMu4mmvZnzf52VtxeluOOqoH074fUybGn3tQqOgMR2d8zexcy1D18gDotNrzUvH4aHBm/EoM09yKOSe4y1uX/8yxAcO9iHhS/DxudDb7RkpptE52i9evxxlnyhdZ5lEMs9ZmnOSYi75vVN+NOBmcOCiev3eRA0byFgCTcs6PioHw0YGPW0WJInNcuN9pqK26K9C2epacRdqaZdueY89bZ7MyYp1ZdvR78KhD+yCApVnWWNTI6MqZKaV7cTKhYyuldG/G3XZaY842NOHqoBfKiW3uS2XIy31mTRnyworJn6+nlEZX9d2I4byL3eK7cDxxc1ltAxiRryLiclfLL218q9jHT7ty+EGc9I+91+LcNKpD7dlpjvYvbRxtzFxjYovkJugSE9zLMzqb/1Ysdjvn47P/Sj7LePRZmyml1TkHMka3eF7kj9Hdog2bKaW9scdGB00jTt9q5/j5hlid47lFgmTZnxcxPSCOQvWsdTm6bfdmRNwrzirbiDj7j/mxMy4345K3vq56eQBwAWXmpVHe2YuzT3ZcjeKqDCmlWwvclljeKucz12P2lSzGz3RPcTIoMcvoOzNen4u+b/JqG7sxvELHmetG3gLgIsYOpo2u6DK6Cs96nIwjvFF3PUtyN86/qnoTJv80op6LZpE5tTnLtjLHXjIjVpZlpxgdzHNCJsB8LjUWVVxdcyOGkzHOHKMam9Ax2k/PmpjRGnOOBTZholkjcmINZMjLf2aVGfLSZlx8b9pdCRYd5wWYl3x1uf17KbmlONHgYfHjblGexMmk7fNOPuibNuemiJqzU13jaBMWGhNbMDdB65ngXp7RZOL1eScsFTvJZQ3cP4qI+8X/z72Cd3FQc9SRLbKjO+4o46RDeTLx/OZEwFjkCvejs47m9WDOAyejjmfq1RfGO7A518eFPm90ZvmcZ49fdiBtNU7+2K/ij/mqlwcAiyozL41OWnyQc7434zNGf/huxvyZSN663GeOruZwltFtDZ/E6YG1RbLXpd9X1H00YPfgjFtSTpK3ALiwoj+fvCPNwxhe7W6zxivdzRrsnzc7jO60+KThV+xrTD0vmEXm0cYs2/Yce5mMWGWWHW//6CpYeyVfBAagyy47FjU6yfFJnNP3FhM6Rj/OymptMuuqjqM+uc6J45fKiTPyfFsufiBDXvwz68iQS1GMx49P1Fq9YNsA5tXnfDXab66fcyLgtInlZY9vHc+jK3F86nh+Vge1MTeN6tiE7FT5ONpEnUoZE5uSm6AzTHAvSc75SUppdKuL+ymleXY892O4kxrdrrXM+hyklB7EsOO/k1LaPac+47eKmbsji5M/IkchbfyxiJPOY6to65MFb4s36oQXqc88Hcjx1c3PCGej4DpvB3LRz3sYwzM7b884w2r03vH3jc4CmxUiNsffV5zJeBDnXzV2fWwZF1b18gBgUWXlpbE/PE89foZRZljk1oXy1iU+s/j3zNvnpZRy8d+7EwNvT8Y+86w7NE3LaRd9350oDtLMO2AnbwGwiGKQ+2nx46uT/WhxRZ9l3Bp2UbdSSnfPyDOnxjpmGB1Yu3VWO1JKj4vXzBqTWbYm1XPhLDKnNmbZVufYS2bEyrLshIUPsAL0WUljUaPcdyuldG9W/1vkyPH3tdmjYl1MzV/FpJdRv1RnWy+aE0ft2zzjfVMn+zSQDHnBz6wpQ15IcaXjO3H2BMbRePyTsYlyFxnnBThX3/NVMeftoFgHt2LKHLZiovM0ZY9vnTdGcNE80+UJ7qP2tSU3RTQnO9UxjjZurjGxC+Ym6IRB3RXomNsxnKy+GhE7Z539lVJaTyntxMlO7O6Sdi5356zPnRjuBCMi7i3SkRX1Hp0xvRnFLWHGXjLqNG9N/LxIG24uUObq1IqOalTPO+PPFYNXo8c+1IGklLZSStvj4e0Snzf6+U7xusllbcewkzyYeO/o/9sppY0p79uKk1D3YMr7Fl3eRVW9PABYVBl56fgP0zky3ai/W50xEHSKvFXOZy6qGGDbi+HVKu5MPl889qEcc9H3xdiEvZTS5jllfOBT3gJgLkV+GGWYD+WQiSvY1HlgbTVO31J+VL87Mf8k2NHzW9MyV/FZG1F//9ikel40i8zUxizb9hw78TkLZcQasuzIeQf7ADitjLGoBzHcn6/HcExs6pVDJ+7Scd7FIdpglDW2ph1fi5O7Pe7VPEH2ojnxzPYVP881Hlk3GfLyn3lBVY8zzvt9reuEZKBf5KuT/e32lP3yeL9z1vooa3xrtP7Xp3zWxox6jNbjxuS6L8YiWpGDFtXG3FTUu0nZqepxtHHzjonJTfSWK7iXqDir52YMb10xmiS1F6d3UutxsnOKWOLVl4qrkk7W50mc7qxuxdgtKnLOdxdcTBSfN/UAaM55d+y2OhEL/rG75CB3u1g3ow7qUbGeRh3MXkRMu+3Q+JUPHlzy8+7GyTZ4WlxFdnR24+j2RRHD78n4RLp7cXJFtZ3ifXtxElhG77s3EVzuFcvbiIjHKaVHZyzv7oJn7J2l6uUB0D2jyeebRaZY9KzymS6bl4o+//iWhXMs70mRD0e3Lpw3B8pbl//Mi7gbw0HG7eLkh/GrIIznmL0S3jfavuMnU5zlXpxcCUDeAmARD2LYz2wXB3b2ijIaBB9dgbnOA2sHMRyoX4/pfei98yYbFfnoXtHW+8Ug//FBrjgZ8K+1f7xkPcvOyRfNIvNoY5Zte469TEasMsuODsKNDh7WftU6gBrtTPSJ04wmjFx6LKoYE7sbwwndGxHxrOgvxvfvo/eM7kZ9kWOIjZJzflBcoXUzhn3kgxj2P6Pjt6M+rcw72lyknhfKiRPt25k47rg19v82kCEv95kXUek4Y7EdR1c7Hj/ePZqEuBrDq5SaqAVclHy1mHtxsv+dliNWY0qWWMI43Ogq3NtTxgfHJzSvF+MWozGxJ3H6omajfmU0KX70/0Us9Th1idqYmyKak52qHkeLiMXGxOQmei3nrJRcYrjTuB8ReUbZiYjNGZ+xU7xuu4T6rI993lllOyJWL/j5G2OfszWjLU/r3jZT6rYVEc+mrI/HEbFxzrbZKenzNmZsn2cRcWvG92zW+7ZnLO/pjPdtzbnutuf5jpa1PEVRFKWfZUqm2hx7rva8VPT9o+fnylJjfegi75G3LvmZM+r3oe/WnMuamWMWeV/x/csLlO2J98tbiqIoytwlhgPus8arVsdeuzmtTz7r8bHnz8xpY+/NZ71nxrjarM+bNk6zXUX/eN76KF7zoTZfpp6zcvIF6n+pLDLH57cyy3Ygx144I1acZe80cfsriqIsUuISY1QL7kNHk3pKG4sqPvO8MbGdaf3UIjnkrAx4iXV+4fwVw+NrZ2XiqcflLrq8mnLiWccPR3cXzxHxbIm/D3MdP5zjc2TIS3zmHPuc0jPkRb4HMft496J/d1z6byNFUZpT5Kvq81XxmRtF/zKtzltj7d48Z53Mm1t2Jj/vvL4hhuMQz6atq4ltOdlnri6a16LE8bc5vksXzk5tzU1j26z27HSZDBQXP5a80JhYWbmprLyuKFWVVHxxWYLiTKDRVbZHDqKmK2EVZ7bdipOzfyKGZ/M8ys08w6wSxXYanc0UMTzj7sK3Vbvo5xVnZo1f3X+R943O8IyYc5sWV3AY/24u9btQ9fIA6I7i9l2jfu5BPv/WgJdZlry0BGXnrWV95jnLGr+S/7x560Lvu0Q95S0A5jJlLKG28aqxOu0UdbqXc747ZZzkQjlwSr5rZP94kXpWmZP7qu05tljehTJi1VkWgHpNyYcRw33/blczxkWPr9VQzwvl2eIKkqOrRj7JOT8qHtuJ4Xa9WXfbuqrPGfISyxv/+++gWFYn9z1Af7Q5X030A3Pvl8sch5vIMqfqMPHcqTGxKXW47Bww429L1qTs1IZxNLmJvjHBHQAAAACo1eQE97rrAwAAbZNS2orhpJrdnPPulOfvxPCKjQ9yzrfrri8AAADMMqi7AgAAAAAAAADApaxGxJ2inDJ2FcuIiN1FPhQAAADqYII7AAAAANBbKaXtlFK+YNm8fA20AQDoH/llKR5ExEFEbKaUdlJKWymlzZTSdkQ8jpOruz+KsA0AoGv07ctl/QJUL+Wc664DAAAAANBjKaWdiNiMiHs557sVL3s9hpN9LuJJzvmgyvp2tQ0AQL/IL8uRUtqIiO0YZutJDyLi7mjd2QYA0C369uWyfgGqZ4I7AAAAAFCrlNJWnFxRcrfu+gAAQJsVE93XI2IjInbDpCoAAABaxgR3AAAAAAAAAAAAAAAaYVB3BQAAAAAAAAAAAAAAIMIEdwAAAAAAAAAAAAAAGsIEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGsEEdwAAAAAAAAAAAAAAGuFK3RWgPPv7+9sRsRERT9bW1u7WXR9t1dYLtHUrIm5FRKytrd2suz7aqq0XaOtGRGwXP95dW1t7UnedtBUup2f9sLZ2UM/6YW3toD5ljj61lX7rWT+srR3Us35YWzuoT5mjT22l33rWD2trB/WsH9bWDupT5uhTW+m3nvXD2tpBPeuHtbWD+pQ5+tTWizDBvVs2ImKz7kpoq7Zewrq2dlKf2ro61tbVuiujrVCKPvXD2tpNfeqHtbWb+pQ5+tRW+q1P/bC2dlOf+mFt7aY+ZY4+tZV+61M/rK3d1Kd+WFu7qU+Zo09tpd/61A9razf1qR/W1m7qU+boU1sXNqi7AgAAAAAAAAAAAAAAEGGCOwAAAAAAAAAAAAAADWGCOwAAAAAAAAAAAAAAjXCl7gp02HpRKnP9+vVXj46OYjAYvBoRmxUu+pMR8Z2idL2tLxXl69pavhdeeOEzz58/H/2orcvzyR619Ycj4rerWtjLL7/8hXfffTciIm7cuPEFbV2ag4h4UvEyaQb5qpttla+WSL6qjHy1JPJVZeSr/pKvutlW+WqJ5KvKyFdLIl9VRr7qL/mqm22Vr5ZIvqqMfLUk8lVl5Kv+kq+62Vb5aonkq8rIV0siX1Wm8fkq5ZzrrkNHfffLEX/4pYgP6q5IBVZjmK2eX/aDWuDFGN744Nt1V0RbtfUSXnke8c2enOD0yaOIr/fkbiV9autHvhax9oN114LqPf/Xv/3ld7/66186+s636q7K0r34Z382Vj6WI3IPsuTg5Yg8iMh/WHdNKmnrO1/Zi/e++q/qrsnSXVv/oXjhj30m4v1/W3dVqvHRP/I80rd6kq8+dfT+4bd6kTmur3zkKD743V60NQYvfS1Wvk++6qXvfDmOvtmP8av0akT+dvSjrS9FPH8e8fxZ3TVZvpVXIq7c6E2WjHQlKjzGXa/80eeRn/UjXw2+v0djOp88iqN/04+2Dl78WsS/I1/10Pu/9Ztf/t6v/YsvHX6r+33Tx/7Cn4srH/0gIr9fd1WWb+WViJVrEUfd364xeDne+5e/G+/vfbXumizd1R9cjxs//oP9Gb968bPP4/k3+pGvrn32KN5/qx+Z4+qnj+J7v9WPtl752Nfixufkqx7qVb76D/5HceXV6M/xwbQS/Zin81J875/9Vrz7G79ed0WW7trrPxwvfuGzEe9WNue7VunVzz+P1Jf5V586ivj9fmSO+ORRPP9aP9o6ePFrMfhko/NVT37B6pHzv42I7h9ISumPRc7fiOEJHV336UjpSuS8V3dFtFVbLyylzx/mvNeL/X9Kq7k/27VPbf2RPpxRxRne+cf/j3j3//PP6q7G0r3w0z8Vg5e/E3H0dt1VqcDnIsXVyIfdP2gW8bl476v/Kp49+D/WXZGle+Xn/1K88KMvRD74x3VXpRLpoz9weJTf6km++nh+93C/7mpU4vrg4zm/3/0B54iIdP2L8lWP5aOvR+TuZ450ZaM3bY3B5yI9/yDy975Sd02W74Ufj7TySuTD36q7JhX4XKSVj/Rn/Cp+6DAf/XY/8tVgLef8tO5qVNPW9ErOR5VdAKvmtv7480h114K6fHvnH8Z3f/Wf1F2NpXvpf/DTsXLjGxEf9GDyyo0fi5Q+Gvn5b9Zdk+W78nq8v/fV+Nbf+z/XXZOle+l/9p/EjR++Hvmb3f99jYhIN149zO/9i37kq6ufyPm9f1F3Napp62At52/9at3VqKatr/xp41c91pt89af/ZKy88r3+HB9cuRH9+Hv4M/Hub/x6fOP/9F/UXZGle/UX/9N48UdvRP7Gf1d3VSqRXv2Bw5yf9iNfpVf7M34Vr+Re/O0XEenqTzY+X/XjTAMAAAAAAAAAAAAAABrPBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABrBBHcAAAAAAAAAAAAAABqhlRPcU0r3U0o5pfT4jOd3Uko753zGua8BAOgL+QoAoFzyFQBAueQrAIByyVcAQJO1coJ7RNyKiIOI2EgprdddGQCADpCvAADKJV8BAJRLvgIAKJd8BQA0VusmuKeUtiJiNSJuFw/dqrtOAABtJl8BAJRLvgIAKJd8BQBQLvkKAGi61k1wj4jNiNjLOT+KiCchYAEAXJZ8BQBQLvkKAKBc8hUAQLnkKwCg0a7UXYFFpJRWYxio7hUPPYqI7ZTSRs75SR112t/fX4+IrcnHV1ev/+SgjacPAH2wUncFqpNS3TXQ1vIdHcXqs2f721Oe2l1bW9utu35t06Z89fLKlZ+sbUUBzNajfBW9yRy9ylc5Vp/ty1dlaVO+Wn3l2k8avgKaKclX3dSbth4dxeqzA/mqLG3KVy9euWr8CmimZPyqk1J/2nqUk/GrEslXAGUwftVRvWlrG44PtmqCe5ycLfig+PdRRGwXj9cSsCJiPSLuTD74/PlRXLtWU40AZsi5dfv+S7Q192auRr/amj4WU/reQiMCVsu0Jl8d9meeIdAyOecrfRnq6FfmOOpRW+WrkrUmXz0/PIprfRqCB1oj52z8qoP61daQr8rVmnxl/ApoKscHu6lXbQ3jVyWTrwAuyfHBbso5etTW5uertm2MrYh4knPei4go/nWbHACAi5OvAADKJV8BAJRLvgIAKJd8BQA0XmvO0k0prUfERvH/POX5Wm6TU1yKf8q5ON/9cs7xperXFMBsKcV7Ocf1uutRUVsPc+7HLRf71NaVlfzW2tra5+quRxe0LV89/9cHX/5uyFdA86SU3svRl3yVDiP6kTlSSoe5J21dGchXZWlbvor4zpfzc/kKaJ6Uolf5qi9jOr3KVyshX5Wkbfnq/Wf7Xw7jV0ADpehZvupJ5kjRn7aupCP5qiTyFUA5jF91U0rRn3zVguODrZngHidnCb4ZEQdjj69GxMMYnl14u+5KAgC0iHwFAFAu+QoAoFzyFQBAueQrAKAV2jbB/UnO+dHkEyml0W1yBCwAgPnJVwAA5ZKvAADKJV8BAJRLvgIAWqEVE9xTShsxvD3O3TNe8igitlNKt8YC2GpKaXPKaw/GbqUzz2sAADpHvgIAKJd8BQBQLvkKAKBc8hUA0CatmOAeJ7fHeXTG8w8iYjsiNsdesxERO1NeuxsRNxd4DQBAF8lXAADlkq8AAMolXwEAlEu+AgBaoxUT3HPOd+Psswcj53wQEWns53PD0TyvAQDoKvkKAKBc8hUAQLnkKwCAcslXAECbDOquAAAAAAAAAAAAAAAARJjgDgAAAAAAAAAAAABAQ5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI5jgDgAAAAAAAAAAAABAI6Scc9116Kjv/UpE/JUql5hz/sTRUX5hMEjvpJT+oLolp09G5GsRUeWXaRCRU0TKEXFU3WKvpojnKSJXuMxetTVF5OLEm3SorcuyMog47ElbrwwinlfY1pzi5OSxo+L3VltL98E7ER97ubrl0RTP/3//+lciUqX56iilT+SIF1LEO4OcK8tXVz712ifjyqDafJXzICJSRORIqduZo8a2Pv83X688c+Q83F+nFJX1w4OXPpoGL6Ya2pqLtlacOa58pOJ8lVIu8lWK6rZrRESOa4OIo8ramvPpzJFSdZkjxdEgcsX5qvh9jVR1vnrvnUivyVe99N1fiVzD+FXOLwxSxeNXqYbxqzrz1dG7KXIPxq8G11Oko+rHdIrMEZVmjqsp4rBH41eD6sevatmuERFXezSms1JxW09t16Oo9BjGB+9EvCJf9dD7e09/JVLF+SoNjsevUj6qLF9d+/4axq8iBpFzilR15rhWfT+cx/JVqvL44LV0+PU/6Mf41Uc+mtJHouK2prG+qdoxnVi5UWc/3O3jgxPjV1Hh+FXklUHk96vcN43/jXAUqcq/sd97J658Qr7qoV7lqx/8+Cfjykp/xq8qH+cYa2tU29YPvvZ7FY/V1XMcaeXluo4PVp8lIyLi6ovmXy1NneNXg4qzZJ356oN3Iq02Ol+Z4N4h+/v7OxGxGRG7a2trN6tb8ne/nPNvfyniWd2roAKfiZSuRs57dVekAp+OlK5oawel9Pn3cv7N63XXo5q2bhzm/GSl7npoa9lt/ZG3Ij71ubrrQT/IV1UY5aundVekAp+OdJQiH/5W3RVZvpXPRRpcj3z0O3XXpBJp5Sd6lK/e6FHm+OJhzv+8J239/FsR3ydfUYn68tW3v5w/+I0vxdF+3atg+VbWI733fuTvPK67Jsv34h+N9MKrkZ9/te6aLN/KeqQrL/Zn/Cr/0Hv58F/2I19d/ZOHOT/uSebYOMwf/NN+tHXlJ96KwffLV1Sivnz1nS/nw69+KfLbda+C5Rt8LlK6Fjn3YJwjfSbS+x9Efuf/W3dNlu/65yNd+2g/xuoiIl39o+/lo3/Vj3y18tOH+fBXe5I5fvowv/9P+tHWKz/xVgx+QL6iEo4PVsHxwU7q3fHBH+/Z8cG+jF/1qa2ff6vp868Gl/8IAAAAAAAAAAAAAAC4PBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABoBBPcAQAAAAAAAAAAAABohE5NcE8p3U8p5ZTS47rrAgDQBfIVAEC55CsAgHLJVwAA5ZKvAIAm6NQE94i4FREHEbGRUlpf9M0ppe2U0k7djQAAaBD5CgCgXPIVAEC55CsAgHLJVwBA7TozwT2ltBURqxFxu3joVt11AgBoM/kKAKBc8hUAQLnkKwCAcslXAEBTdGaCe0RsRsRezvlRRDyJKQErpbRe3EbnaUrpWUrpYUppo3huu3jPRkppZ/Q4AECPyVcAAOWSrwAAyiVfAQCUS74CABrhSt0VKENKaTWG4ehe8dCjiNhOKW3knJ+MvXQnhrfQeVD8fKt47NWI2CvKegwD2sE8y97f31+PiK2610Hhh0b/7u/vb1e10NXV6z856NKpEtB9K3VXoDop1V0DbS3f0VGsPns2tZ/bXVtb2627fl0hXx2Tr4B59ChfRW8yR5/aenSU5KsKyFfH6slXr1z7SfEKWiQl+aqbetPWoxyrz/blq2WTr47VN35Vd8uBBfQpX/XnmFn0Kl8l+aoC8tUxxweBOfQpX/Unc/SprW2Yf9WJCe5xcrbgKDg9iojRGYFPIiJSSpsxDE83c867xWO7cRLEHqSU1iMics53F1j2ekTcqXsFTPhslXV6/vworl2ru8nAvHLuzL5/jrbm3vz516+2po/F2f1cIwJWR8hXp322yjrJV9AuOWf5qoP61daQr6ohX5322Srr9Pz5UVzr0+EGaDn5qpv61Vb5qiLy1WmfrbJOz58fxbXe7K2h/Rwf7KZetfVIvqqIfHXaZ6usk+OD0C7Gr7qpX21tfr7qysbYiognOee9iIji38nb5OyNXju6/U3O+UnO+ebEWYYAAMhXAABlk68AAMolXwEAlEu+AgAao/VnkRRn/W0U/89Tnt8ogtReSul2DM84eJxSOojhWQYPRmcUXkRxKf5G3JZgf39/JyI2Y3iLgJvVLfm7X845vlR3+4H5pBTv5RzX665HRW09zDl6cY2+PrV1ZSW/tba29rm669Fl8tUJ+QqYR0qpR/kq9SZz9Kmt8tXyyVcn6stX3/5y/kC+grZIEe/lkK+6JqV0mKMfbV0ZhHy1ZPLVifry1Xe+nA/lK2iLlHKPxq+iN5mjV/nK+NXSyVcnHB8E5tGv+Vc9G7/qSVtXVpo/ftWFK7iPzhJ8MyJujpU3i8e3Ri/MOT/IOb8eEW9ExL0Y3t5mJ6V0a/7FAQB0nnwFAFAu+QoAoFzyFQBAueQrAKBRWn8F9xgGrCc550eTT6SURrfJuZ1S2oyIzZzz3eKWOE8i4l5K6WkMz0B8tMhCAQA6TL4CACiXfAUAUC75CgCgXPIVANAorb6Ce0ppI2aHo0cRsVqcIXgQEXdSSttj79+M4VmEB3W3BQCgCeQrAIByyVcAAOWSrwAAyiVfAQBN1OoJ7nFye5yzAtaD4t/N4qzBBzEMWTmllCNiJyJ2c873itcdRMRmSulxEd4AAPpGvgIAKJd8BQBQLvkKAKBc8hUA0DhX6q7AZeSc70bE3RnPH0REGvv5dkrpQUSsFg8dFMFr9Py94rY6ERF7dbcPAKBq8hUAQLnkKwCAcslXAADlkq8AgCZq9QT3ixgPVGc8v1t3HQEA2kS+AgAol3wFAFAu+QoAoFzyFQCwbIO6KwAAAAAAAAAAAAAAABEmuAMAAAAAAAAAAAAA0BAmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AgmuAMAAAAAAAAAAAAA0AhX6q4AXZB+LaU/8jNVLjHn/Imjo/zCYJDeSSn9QXVLvvZSxPuvpbR2VGFzBxE5RaQcERUu92qKeJ4qbmuKyMWJN+lQW5dl5VpKf6LKZdbY1iuDatuaU5ycPHZU/N5qa+k+WKtuWVAX+WrJrR1ERIqIHJGqzVcrH6S08olqM0cu+uFUQ75a+XjFbS36phRVZ46e5aufqqutRxFRcb76mZ7kq/flK3og/Vq68mMV56v4xFHOLwxSeielqC5fpesvRf7ua+lj319ZP5wjBpEjRYqcqhy/uvJCikFO6VoP8lW6liIOU0qv9WP8Kg2upcGfqnCZKUU+qiE3R0RcG6T00z3JHCuDdLXC7ZonsmSqMEtm+Yo+SL+WVj5fbb46yif5alD1+NUH1R8fLPJVVH188Op7KV2tLktGXWM6g2sp4qgnY3URESvX0sqfrHZMp76xukGNba1+/Orav19hvprIksn4FZTL8cElt9bxwSraWvnxwTTW1jqOD1Y5plP38cG+jF/1qa3Nn39lgjsl+MjfjIi/WeUS3357fyciNiPiH6+trd2scNGbEf9mJ+enK1W2t5AiosLlfiZSuho579XR1qi2rZ+OlK70pK0RKX3+vZx/83o/2rpxmPOTurZrpXdJ6Vdbf2Q/4mM1NRWqIl9VpPp8dZQiP/9q9zPHyucirdyIfPQ73W9rRKSVn+hRvnrjMOev9CRzfOEw53/ek7Z+fj/ilZqaClV56W9G6k++evvvPdr5xn/5tzufr177S385Pv6//rORv/Wr3c8cL/3xyB/9gTjKv9v9tkbEleff917+7j/tR75a/Q/6kzmO/vhh/uY/6EdbX/qZ/bj+ak1Nhaq8WP341bM6x69+r57xq1zD+FWOnoxfrfds/OrH38v5N+rJV7nq8aufOsxH/6ye7ZorzhyDP3GYD2v7e6jitv7YfqTVmpoKVenb8cGa8lXlxwdHc5JqaWvF/fBorlkf2tq3+VdvHOb8uB+Zo1dt/Xzj519VukIAAAAAAAAAAAAAAOAsJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIJrgDAAAAAAAAAAAAANAIrZngnlLaTinlGWWnhGVsFp+1WXd7AQCWTb4CACiXfAUAUC75CgCgXPIVANAWV+quwAXcPOPxg7orBgDQUvIVAEC55CsAgHLJVwAA5ZKvAIBGa90E95zzbt11AADoEvkKAKBc8hUAQLnkKwCAcslXAEDTDequwDIUt9PZSindSik9Lm578zCltDHldU9TSs9SSvcjYrXuugMANJF8BQBQLvkKAKBc8hUAQLnkKwCgTq27gvucNiJis/j/vRgGp+3i8dcjIopAtVU8f1A8d3/RBe3v768W722CV0f/7u/vb17qk5qvlra+/PLLX7h+ve6mw6Wluiugrdp6GTmnG2+/PXXfv7e2trZXd/06TL6Sr5ZCvqIjetMPR+QetbU/21W+qo18JV8txcsvv/yFuhsOl5b60w/3Kl/l/mzXHOnG2/vyVQ3kK/lqKYxf0RG96Yf71db+ZMkcIV/VQ76Sr5ZCvqIbUm/64ehVvupPW3OOxh8fbN0E95TSzhlPPco5Pxj7eTUi3sg5HxTviygCVHEm4VZE3M0535v47EU7642I2FnwPcv2xQbWqRNtfffdd0PAou1yjmt116HCtnbyTiV9b+vRUXwypu/770XE3brr10by1VzkqyWRr+iCnLN81UE55960Vb4qn3w1F/lqSd5999262wuXlo+MX3VRjj7lqyRflUy+mot8tSTGr+iCfh0f7E/m6FOWPDo0flU2+Wou8tWSyFd0Qb+OD/YpX/WnrW04Pti6Ce4R8eSMxyfPGNgdhaspz98q/n0w8Z4HsXjAAgBoO/kKAKBc8hUAQLnkKwCAcslXAECjtW6Ce8553jMDDs57wUQAm+s9UzyJiJt1r5fCvRieUfeViLhTd2W62NYbN258ISL+Vt2Nh8tIKd7vy1UaUoqjvly5oE9tHQzi6xHxC1OeasTtcdpIvppJvloy+YouSCnJVx2UUupNW+Wr8slXM8lXS3bjxo0vfEe+ouXSIN7PIV91TYp0lKMfbR0MsnxVMvlqJvlqyYxf0QX9Oj7YnzGdlKI/+WrF+FXZ5KuZ5KslG+arP5SvaLV+HR/sU77qT1vbcHywdRPcm2Ztbe0gInbrrkdExP7+/rPiv8/W1tYaUSdthUbKdVdAW7X1MlLK79r3d5t8pa3QQr3phyNSj9ran+0qX3WffNW/tn6n7sbDZeX+9MO9ylepP9s1hXzVdfKVtkIL9aYf7ldb+5MlU4R81XHylbZC++Te9MPRq3zVn7am1Px81YszDaZ4EhGRUpq8HY7b4wAAXIx8BQBQLvkKAKBc8hUAQLnkKwBgaVp3BfcpoWjckym3vfmQnPOjlNJeRGynlN7MOe8Vn7tVd/sAAKomXwEAlEu+AgAol3wFAFAu+QoAaLrWTXCPiJ0Zz92M+W9X82bxWU9TSqPHbkfE/bobCABQMfkKAKBc8hUAQLnkKwCAcslXAECjtWaCe875bkTcnfO1N6c8thsRaeznJyml1yNio3hoL+e8FxEP6m4rAEAV5CsAgHLJVwAA5ZKvAADKJV8BAG3Rmgnuy1DcTmfeMw4BADiHfAUAUC75CgCgXPIVAEC55CsAYBkGdVcAAAAAAAAAAAAAAAAiTHAHAAAAAAAAAAAAAKAhTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARTHAHAAAAAAAAAAAAAKARrtRdAWiZg4iPv5XSxytbYM75E0dH+YXBIL2TUvqD6pp67aWI919Lae2oumVGisjFiTfpsLrFXk0Rz1M/2hoRsXItpT9R5TJrbOuVQbVtzSlOTh47ikhZW5fhg7XqlgVUoGf56p3X0uC1SjNHzsN+OKUK++HB9RTpKKVBhfkqRYqjInNU2daIiLjas3z1U5Vmjpyj+A5XnTkGg5R+utrtWrQ1UhxFhHwFXNTBy3/mZ996+c/8bGULzGnwiRzxQop4J+WjyvLVlVdWX4oXVl5LH/lctWM6uYbMMbiRUoo0SD3IkhERV/O19LG/UHE/XFeWvD5I6Wf6MaYzSIO0+j+ttq2n8lWFbc3vyVfQLf0av0rvvJZWPt79zLFybTh+tVLl8cGUIh/VlDmuXKt+nKOufHVlkAZV5qtTba14TOfKIK38u9W1NU9kyVRlvnpfvoJuOYhYeyul6n61a81XR+++lo5We5CvrqeIw5TSqxXnq1E/HDUcH6w4X9V6fLDKtvZp/pXjg7OY4A6LeRLxkc9VucC3397fiYjNiPjHa2trNytc9GbEv9nJ+elKle0dU+FyPxMpXY2c93rQ1oiUPv9ezr95vR9t3TjM+Uld27XSu6T0q60/sh/xsZqaCixBr/LV23/37+9847/8253PHK/9pb8ca7/4pyO//f/qfFsjItLrP//eUTztRb6K9FOH337/93qROV65+tph/t4/6kVb0/Uv7seVV2pqKrAET6597vVK89X+fo3jV89/Zye//6+6nzmu/FCkqy/XNn6Vc8X5Kv/Qe/n5r/UiX6Vrf+ow58f9yBxp4zB/8E/60dYrP7FfUzuB5ejV+NV7/+gf7rz7f/+/dD5fXf/Z/yhu/A+/GPlbv9r5tkZEpI//uffyu1/pR7568WcP83f/n/3IHC/8mcP89v+tH2396L+3Hy+s1tRUYAl6la+e/b2/v/ON/+q/6HzmePUX/tNY+1/+e5G/8d91vq0REYM/8r94L8dX+5Gv0k8d5vzP+5E5YuMwv/f/7kdbr/7kfqy8UlNT51PpCgEAAAAAAAAAAAAAgLOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCOY4A4AAAAAAAAAAAAAQCO0boJ7Smk7pZRnlJ266wgA0CbyFQBAueQrAIByyVcAAOWSrwCAprtSdwUu4eYZjx/UXTEAgJaSrwAAyiVfAQCUS74CACiXfAUANFJrJ7jnnHfrrgMAQJfIVwAA5ZKvAADKJV8BAJRLvgIAmmpQdwWWJaW0mVLaSSltjD22mlJ6mFLaGntsK6X0eHR7nZTSrbrrDgDQRPIVAEC55CsAgHLJVwAA5ZKvAIC6tPYK7ufJOe+mlO5ExP2IeKN4+E5EbETE7YiIlNJ28di9iHgQEZsR8TCldHPeMxT39/dXi89sgldH/+7v72/WXRltbXdbX3755S9cv15301mSVHcFtFVbLyPndOPtt6fuD/fW1tb26q5fl8lXMkeH1Jav6m44y5Ei9aYfjtyfzNGntuZIN97el6/qIF/JHB1S3/jVSt1NZylSj/JVj8Z0IufetFW+qo98JXN0iPErSjboTT8cfcpXIV+FfLV08pXM0SHyFSUzftVRvWlrG/JVaye4p5R2znjqUc75QfH/2xHxuAhSuzEMUzdzzgcppdXi53s557vF6x+klB5HxFbx+nlsRMTOnK+tyhcbWCdtbVlb33333TDBvZtyjmt116HCtnb2TiV9buvRUXwypu8P70XE3QU/jjHy1UwyRzdVnq/opqOcr/VoqKM3mSN3+K53k+Sr5ZGvZpI5uqn68asX624yy5CPco/Gr+SrLjo6lK+WRb6aSebopsrz1Y26W8xS5NynfNWfzNGnth7lJF8tiXw1k8zRTY4PUorco+ODvRq/6lO+asHxwdZOcI+IJ2c8fnzmQM55L6V0LyK2I+JWDMPUKDiNboVzb+L9b0bEat2NAwCogXwFAFAu+QoAoFzyFQBAueQrAKCRWjvBfeysv/Nedy+ldCsiNibes148fzDx+kUvrf8kIm7WvT4K92J4ltlXYnh2ZJdp65LduHHjCxHxt+puPOVLKd7vy1XcU4qjvpxZ16e2Dgbx9Yj4hSlPNeL2OG0mX00lc3RTbfnqO/JVJw1Sev8w+pGvItJR9OTKmyniqC9XGZWvlke+mkrm6CbjV5QqDdL7+bAf+Sql1JsxnV7lqxX5alnkq6lkjm6SryhVSun93JPxq5T6kzn61NZByvLVkshXU8kc3VRbvvqufNVJ/cpXPRq/6lO+asHxwdZOcJ/XKFxFxEFKaXveYDavtbW1g5j/djpLtb+//6z477O1tbVG1ElbtZVGynVXQFu19TJSyu/aH9ZLvuomba3Gd+puPEuRI/emH47Un8zRp7amkK/qJl91k7ZW5HndrWcpco/yVY/GdCKl3rRVvqqffNVN2lqN9+puPEty1Jt+OPqUr0K+ojryVTdpazW+W3fjWRLjVx3Vm7a2IV91+kyDlNJqRNyP4RlY9yLiTkppo3h6t3jN5sR77qeUHtdddwCAJpKvAADKJV8BAJRLvgIAKJd8BQDUobVXcJ8MRhOeFLe+uR8Re6OzBov33I+IN3LOuymlvYjYTindzDkfFOHrVkQ8qLt9AABVk68AAMolXwEAlEu+AgAol3wFADRVaye4R8TOjOduppTWYxiW3hh7/HZEPB67Vc6bEfEwIp6llEav2Y3h2YYAAH0jXwEAlEu+AgAol3wFAFAu+QoAaKTWTXAvgtHdOV/+YOK9exHx6tjPTyLi9bGzEQ+KxwAAekO+AgAol3wFAFAu+QoAoFzyFQDQdK2b4L4MOefduusAANAl8hUAQLnkKwCAcslXAADlkq8AgDIN6q4AAAAAAAAAAAAAAABEmOAOAAAAAAAAAAAAAEBDmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjmOAOAAAAAAAAAAAAAEAjXKm7AkBjHUR85Gspff55VQs8OkqrOcfHIiJWVvJb1TX1xRcjPni1yrZGxErO+UpERErpvQqXGxE3rqb0+SqXuZJzFG2Nitsa1ypua8o5rhVtfT8isrYuw9VXKmwnQJkOrn/6M1/71F/7G5VljnzlympcWflYRER69723qlru9c9+7sV07WOvpk/8+QrzVVrJxd+4KXK1mSO9cHUQP1zhMtNYlqw2Xx3lfO0jVz5e2TJTSikf5WHmGKT3c87VZY58dC1d/2J16zel0/mqyrYOrr9S2bIAynUQgxe/lq798erGr3JazUc1jF8NXnox4ujVlH6k4vGrusZ0rl1NV/5oL/JVVD6mk1LORb5K6f2IKvNVXKt0u05kyUrzVbr2SmXLAijXwcrHv+9rL/zH/9vqxq9WVlZjUIxfffD+W1Utd+UTP/BiXHnx1bT6Z6odvzrOVxWPXw1euppuvFFlP3ySr6KGfFVpWyeOmeUqj5nla+lj/37FWXL8+GCV41c3XqmunQClOrj2A5/+2if/D3+9+8cHP/O5F9O1l19Nn/of9+T44EeupvjRnsy/ytdSqrKtNY9fXf1j/ciSLRi/MsEdOMuTiI//YJULfPZsfzsi7kRErK2tfa7CRW9G/O5Ozk9XqmzvSM5xvcrlpfRj7+X8m5Uus762bhzW2NZr2rqstv7I79fRToASPHnpz/65SvPV/n6N+er939rJ73+1nnwVFWeOePW9yL9V8TKPG1vpclfSG4eHFWaOnE8aW3XmiMHnD/PRV6tbv2PDVdXnqx+Xr4C2ehKDT1U7flVnvurb+FX8TrXjHKPMUXmW/OJhzhVmjjHVZ443DivfrsV9jHPEtZMQXUVbjV8BrfXkyk/+qf6MX33w2zv5g9/sSb7aeC9HhceR8qn/VtvWwb97mA9ramvV+WrlZw7zBz05Prjyx+QroK2evPSzfTo++NWd/F5N+arqzJFfqzZfjbe18iz5Ro/mJL1xmOM3+pEl0481Pl8N6q4AAAAAAAAAAAAAAABEmOAOAAAAAAAAAAAAAEBDmOAOAAAAAMD/n72/i5FrTe/D3ucpcn/NntFM72lZcuxo9vSWookn0YncW9I4AeKLNGEgOAe6MHpLBhwrybGbuTgQcBAgJHxrwGgGyM25Mgn4xgigmARyaQToBpKbwJbMHgdwbMuRd3sMxLLi9LBHGms0H7v7PRe1iiwWq7+r13rXWr8f8ILs+nyfWtX1/ll81loAAAAAAABV0OAOAAAAAAAAAAAAAEAVNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFTS4AwAAAAAAAAAAAABQBQ3uAAAAAAAAAAAAAABUQYM7AAAAAAAAAAAAAABV0OAOAAAAAAAAAAAAAEAVNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVGEQDe6ZuZWZJTO3rnCfvczc7XruAAA1kq8AAFZLvgIAWC35CgBgteQrAKAmg2hwBwAAAAAAAAAAAACg/zS4AwAAAAAAAAAAAABQhUE2uGfmbmbuZOZ2Zj5vTp/zNDM3l9z2wUW3AQAYO/kKAGC15CsAgNWSrwAAVku+AgC6dLfrCdySzYjYav7+KCLWImK3ufyjudttR8ThBbc519HR0Vpznxp8MPvz6Oho60aPVD+1DlBmfqWUEhERbdb6hS984effeafr6luVXU9ArWq9iVLy3W9/e+lnxOH6+vph1/MbMPlq4OuwWoep03w1mpUpIiJHU20ZUeaIEdVaIt/99pF81QH5auDrsFqHyfdXbRlPvooRZY6IMppaSwnfX3VDvhr4OqzWYeo0Xw3ycIBnyMlo1uEo48kco8pXvr/qinw18HVYrcPk/wdbkpFRup5Ei9WOhnwVFeWroTa4R0wD08ellOOIiJx+H/54ye0+ucRtzrMZEXtdF7vgT1c4J7Wq9UKzcNVordbvf//7Mab/ICylvN31HNqrdZhnKhl7raen8ZOx/DPiUUQ87Hp+AydfjYNaB6TTfPVe19W3Z0z5KkaUOUaVr06KfNUd+Woc1Dogvr9qx5jy1Zgyx5hq9f1Vp+SrcVDrgHSarz7XdfXtKacjylcxnswxqnx1Il91SL4aB7UOiP8fbEcpMZ58VcpoMod8FREV5ashb4z9WXBqLNuj4NklbgMAwJR8BQCwWvIVAMBqyVcAAKslXwEAnRjyEdyPb/4Ql3IQEfe6LrbxKKZ7mX0zIh50PRm1qvWqMvP/XUr51ebH1n6v3n333Z+PiP+26/rbkpk/HMtehJlxOpY968ZU62QSvxcR/9mSq3xRcvvkq2FT6wDJV+0YU76KjNOxHMU9M07HcsSvyZ2Ur7ojXw2bWgdIvmrHmPLVmL7TGVOtvr/qlHw1bGodIPmqHTnJH5bTkeSrGM93OuP6/kq+6pB8NWxqHSD5qh2ZMaLvr3I03+nIVxFRUb4acoN7K9bX148jYr/reUREHB0dvWj++mJ9fb2KOalVrVesdWv296HX2rFy84foDbUOUGb5vs+IYZOv1KrWldbaXb76YdfVt6mMZx0eUeaIEdWaIV8NnXylVrWutFbfX7ViPPkqRpQ5InI0tWaGfDVw8pVa1brSWrvLVz/quvoWldPRrMOR48kco8pXvr8aPPlKrWpdaa3+f7ANZUzf6YypVvmqJqPY0wAAAAAAAAAAAAAAgPppcAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqMLdriewCqWU/YjIuZ/vreI2AABjJV8BAKyWfAUAsFryFQDAaslXAEBNHMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgCne7ngBAHf749zI/+KP2nq987vQ03ouImEzy2+3W+u4HmZsn7T1fZillMv1btPi8ERHvT9qtNbKUmNV6GhFFrbdivcXnAuC63v7K9/LuH2svX5XyudPSVb56/4PML7S8Ds/yVbacrz43eXvy9daes0RkNJkjMk6z1czx3iTvfkO+AqAivr+6RZ3mq/F8p9N2rWWh1myx1iJfAfTBWz/1vbz74y1+fxWfOy2lm3yV73+Qkx8bSb76/CTf+jPtPWcpWZqDS2bEaWSbmePzk3z3Px5JvvL9FUAvtP7/g13mq89/kPHxSPLV+5PMzmptv//qTpv/P+j7q/NocAeI2I94+/2It1t7wqOjo92IeBARsb6+3vJi8bv/vJTf/rDd55wqJe60+XyZv3BSykGrzzlXa6tnScncHFGtP3sU8YUuSgXg8vYj3nk/Ju+09oTyVTum+ep5J5kjSkza/B+zzI9PSvnmiPLVj3VRKgCXN67vr8q//Ofl5B992Opzzp46Ws5Xd/9MZ/mq/czx8Un57O91U2vLZzTOO3/qKNL3VwCVm35/lS1+f/XtLvPV7/7zcvqPP2z1OWdP3Xa+uvNLJ+Xkt0aSOX7xpJz85khq/fpRxBe7KBWAy9uPePf9mLzb2hN2+/+D/2pE/z/48bi+vxpNrV+r/v8HW31BAAAAAAAAAAAAAADgLBrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqEJvG9wzcy8zS2bunnObp4u3ueg+AABjJV8BAKyWfAUAsFryFQDAaslXAECtetvgPmd72YWZuXbGdfsRcdj1pAEAKiZfAQCslnwFALBa8hUAwGrJVwBAVe52PYEbOoyIjczcKqXsL1y3HRHHEXEwf2Ep5V7XkwYAqJh8BQCwWvIVAMBqyVcAAKslXwEA1en7EdwPYxqglu0puBURzxYvbE6tszP3805mPm9OnbOXmdsBADBe8hUAwGrJVwAAqyVfAQCslnwFAFSn7w3uERFPYiFgzZ0eZ3/J7bciYqO53W5EPG5udz+mexw+zcytrosCAOiQfAUAsFryFQDAaslXAACrJV8BAFXJUkrXc7jexDP3mr9+EhEvIuKTUsqz5rqdiNgtpXzQ3O6glPKwua5ExKNmvIiIR7PrmuufR8RhKeWTy8zj6OhoKyL2LnNbgBqsrf0oJpN/0vU0WvILsXCmtAHbHE2tp6dfi+Pju8uuerS+vv7wqo/HK/IVwPWMK199HGPJHGOqVb66PfIVwPWsfekHMYl/1PU02nHnGzGWzBGxGXHym11PohWn8fU4/s7by66Sr25IvgK4nrUv/TAm+Y+7nkY7Jr8YcfpbXc+ipVp/YWT56p1lV8lXNyRfAVzP9P8Hf7vrabRkPD1JY6p1+v+Dby27qpp8dffmD9GtUspxZj6L10+Js/T0OAtmex0+Wrj8k4hY67ouAICuyFcAAKslXwEArJZ8BQCwWvIVAFCb3je4N/YjYjci7s+dHueiPQA3IqYBbf7CUsrhFZ/7MN4MaV35lYj4MCK+FRF/u+vJqFWtV5WZf7aU8o3mx1p+rwZXa2b8VxHxxa5fg3ZqzdNSYtL1PNS66lrL70fE31hy1f5VH4tzyVdTo1mH1TpM8lVbzy1fDdG4apWvWiJfTY1mHVbrMMlXbT13/FdR5KuhyczTEmOpNeSrdshXU6NZh9U6TPJVS889GVm+Gk3mGFOt8lVL5Kup0azDah0m+aqt5/b/g0M0rlrrz1dDaXB/FhGPM3M7pnv/Hc9Ol3Pb1tfXDyOiisPxHx0dbcZ0If5ntZwiQK1qvWKtuxHxjYgItd6m3/2VMpIvsCJK6XoGal29ySSOh/4ZUQn5Kka3Dqt1gOSrtowpX8VoMod8xS2Qr2J067BaB0i+akn5l79STuSrARpNrZNJka/aIV/F6NZhtQ6QfNWS4vurgRpNrb6/ao18FaNbh9U6QPJVW/6VfDVMo6m1D/lqEHsaNHsBzk6Tc5nT40Q0exlk5tb8hZn5ODOfd10TAECX5CsAgNWSrwAAVku+AgBYLfkKAKjJIBrcG/sxPTXOdlziEPmllP2Ynt5mtzmtTmTm5mXvDwAwAvIVAMBqyVcAAKslXwEArJZ8BQBUYUgN7s/i6qfH+aS5z4vMLBHxPCIOIuJR18UAAFRAvgIAWC35CgBgteQrAIDVkq8AgCrc7XoC11VKubfw83FE5CVul3N/P4iIj+ZOk3PcXAYAMDryFQDAaslXAACrJV8BAKyWfAUA1Kq3De6r1JwuBwCAFZGvAABWS74CAFgt+QoAYLXkKwBglSZdTwAAAAAAAAAAAAAAACI0uAMAAAAAAAAAAAAAUAkN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFTS4AwAAAAAAAAAAAABQBQ3uAAAAAAAAAAAAAABUQYM7AAAAAAAAAAAAAABV0OAOAAAAAAAAAAAAAEAVNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFTS4AwAAAAAAAAAAAABQBQ3uAAAAAAAAAAAAAABUQYM7AAAAAAAAAAAAAABV0OAOAAAAAAAAAAAAAEAV7nY9AQDa9uNfyvzCt9t7vvK509N4LyJiMskWnzci4v0PMv70SXullizNzmMZcRqZpcVaJ5mb7dUakaU0tWacRkSLtcZ6i88FAJcwsnyVH7ecOUqTObLlzCFfAUBn8o99Ke+2mK9K+dxpka9aqHWSd7/RYq1lIV+1+V1dka8AqEv++Jfyzi+1nK9Kk68m7eerO780kszRcr4qkSWaLBl5Gun7KwDGbP1LmR+3mXM+d3pafH91+7VOxlNr/flKgzvA6Ly1FvFWa892dHS0GxEPIiLW19dbXRi//4/+4dG3/uL2l9t8zjmtniXla9/8rZMS37zTRaGzL+3akvmzRxFf6KJUADjDePJVxB8clc9+s5N8VVrOV3n3z5yclP+tk3wVLeerSf7MUcpXAFSl5Xz17S7z1XePSvn73eSr1r/T+YWTUp6P5Purrx1F/FgXpQLAGUaWr05G8v3VnV88KZ/9vW7yVeu1fv0oUr4CoCZj+v/B7x6V8nwk3199PLLvr+r+/8FWXxAAAAAAAAAAAAAAADiLBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACowt2uJ3CRzNxq/npcSjm4xcc/LKUcdl0vAMBtk68AAFZLvgIAWC35CgBgteQrAKBvqj2Ce2buZuaLiNhrxvPMfJGZu2fctpwxHmfm2sLt12b3mXv8TzPz08zc7Lp2AIDbIF8BAKyWfAUAsFryFQDAaslXAEBfVXkE98x8HhGbEfEkIp6VUvabPf22I+JBZq6VUu4vueu9hZ+3IuJBRGwsXPe0ue5RRDyLiMO52+5l5sf2JgQAhkS+AgBYLfkKAGC15CsAgNWSrwCAPquuwb3ZQ3AzIu6XUp7MLi+l7EfEfmYeRsRuZh7MXz93m3n7zd6DO5m5UUo5zMydmIap+wv3f5aZ+xHxaUyD1rIABwDQO/IVAMBqyVcAAKslXwEArJZ8BQD03aTrCSyxExH7i+FpppTyKCIOYhqCLuO4+XNj7vEPlj1+KeU4pnstrl3ysQEA+kC+AgBYLfkKAGC15CsAgNWSrwCAXquqwb05Dc5aTE9bc579iNjIzI2LH/VlsJqd8mazuf9SpZSHpZRPun4tAABWQb4CAFgt+QoAYLXkKwCA1ZKvAIAhuNv1BM5weMH1+zHdg3Bj/rbN6XXmbcb0dDiPmtPjbDWXH6xqokdHR1sRsdf1C7Zg6+joqHQ9CbWq9SbUOkxt1/p+Ztclt6aUcidGUu7JSX54fLz0vfRofX39Ydfzq5h8dTNjWofVOlBqHaa2a/3gg7fGEjmm+WokTk7yw+/IV9chX93MmNZhtQ6UWoep/Xz1dozlK6xx5avw/dX1yFc3M6Z1WK0DpdZh8v3V7RldvvqOfHUN8tXNjGkdVutAqXWYfH91e0aXryr//qrWBvfrWjxtzkFMw9Xii318yccDABg7+QoAYLXkKwCA1ZKvAABWS74CADpXa4P72gXXbzZ/vhaUSikX7Scy23NwK844TU6zl+FWRDwppVy0J2PEdA/GR52+Wq/8SkR8GBHfioi/3fVk1KrWq8rMP1tK+UbzYy2/V2rtca0Z8esR8V7Xr0ErtWaelohJ1/Nop9by+xHxN5ZctX/VxxoZ+ep6RrMOq3WYZI5h6rLWSeavlxHlqyjjyFeTDPnqeuSr6xnNOqzWYZI5hqnTfDWJXy9lPPmqjCRfpXx1XfLV9YxmHVbrMMkcw9T591djylej+f9B+eqa5KvrGc06rNZhkjmGqdvvr0aWr3x/VU2+ylLqOjNDZr6IiGellPvn3GYvIjZKKR81P+9GxINLBKzIzE8j4rCUcu+M6y/9WLU5OjraiyY8rq+v37vp49VMrcN0dHS0G82ewOvr6737HVRrfbV+/x/9w6Nv/cXtL3f9GrTha9/8rZMS3xzFaXIyf/ZbEX/8q13Po0/kq+sb2Tqs1gGSOYap21r/4Kh89pujyFd598+cnJR/MIp8Ncmf+VbGT8pXVyBfXd/I1mG1DpDMMUzd1vrdo1L+/jjyVf7CSSnPR5GvMr/2Ld9fXY18dX0jW4fVOkAyxzB1nq9ORvL91Z1fPCmf/b1x5Ks7X/9W5J+Qr65Avrq+ka3Dah0gmWOYOs9X5fk48lV+7PuritS4p8GTiNhp9uR7Q2buxHSxeXbNx38WEVvLHj8z1yJiJyraAwEAYAXkKwCA1ZKvAABWS74CAFgt+QoA6LUaG9wfxfRUNk8z80ETeiIzN5q9+x5HxEEp5eGKH38zIvZienqeQZ+uAgAYHfkKAGC15CsAgNWSrwAAVku+AgB6rboG91LKcUTci+mefrsR8SIzS0R8GtNTLDxqrr/p4x8sPP7ziNiIiE9KKfYgBAAGQ74CAFgt+QoAYLXkKwCA1ZKvAIC+u9v1BJZpQtD9zHwYEZtzVx001y3e/mFEXHqPwlnIysyNmIaq2eWCFQAwSPIVAMBqyVcAAKslXwEArJZ8BQD0WZUN7jNNELq10FNKOYyIw67rBABoi3wFALBa8hUAwGrJVwAAqyVfAQB9NOl6AgAAAAAAAAAAAAAAEKHBHQAAAAAAAAAAAACASmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqcLfrCTBM3/ydo/JX/+ZvxWSScWeSMXk5JjG5E9M/X7tuetmdO9PbZGbz97nbND9PMmNyZ3b/2JpM/lV5+diTV/d7+ZjNn5NsLsuMO9lclxGTSU6fr3nsl7eP2TwjvrL2uZhkxO/+wfdfu99k7n6Thcd8OfeX12VkREzyNDJKZJ5GxKu/v/qz+XucRmSJyeent5vk6dbxD/6gZJbIOJl7jBKTmP45u39EiUm+vF/zc2me7zQy3o/MH49y+jsRpUREiTg9nW6809O5n8v0+rJ42Wlz+ey6c+738s9o/jx97fnKaXOb09P44OQ04rREnJzG6b8qJU6bn09PI05mf85fdtr8GZEf/+U4/bt/Y/pzc9lrt5+/38vblNeuK6enEZ+VOG2uK6enUU5KlJPpZeXkdHrZZxFxWuL05DTKaXP7l/d7dZ/ZdeWz6f3iJKaXnUwf67S57PdPT8v0Pqcv77f+//n/xpf/879yPyKedP37DEAd5Cv5Sr6SrwBYLflKvpKv5CsAVku+kq/kK/kKgNWSr+Qr+Uq+gjHT4M6t+NM/s971FFbqc2/dicyuZ7FKdyPiC11PYqXyyz/T9RRW6t1/9+sRERtdzwOAeshXtZOvaidfAbBIvqqdfFU7+QqARfJV7eSr2slXACySr2onX9VOvoJ+m3Q9AQAAAAAAAAAAAAAAiNDgDgAAAAAAAAAAAABAJe52PQEAuC1v/cRPvvfjv/5fdz2NduS7kxzNWZXe+qDrGQDAeL37Xk6GdXrKs709meRXu55EK1K+AoAOvfNe5kddT6KtWifjqVW+AoDuvPNeTn6660m0VetkNN/VpXwFAN3x/dUw1Z+vNLgDMFh31n/8/S//F3+ltec7Ojraioi95sd76+vr++1V+92jUv7Zl9t7vu5kfu1F13MAgPF6+/2YfNjas3Wdr+Lkt0eRr2Lyp15Edj0JABirt9+P+Eprz9ZtvvqDo/KjfzKKfJV3/r0XzqEMAF15+/3ID1t7tk7zVfn9o/LDfzyOfPXWz72IO13PAgDG6u33I36qtWfr+v8H9V/Vw9dr3Iq//b982vUUVurb3/thfPt7P+p6Giv0/SjlX3c9iZUqh/9z11NYqe/u/U8RES0uzgDUTr6qnXxVO/kKgEz9v1QAAIAASURBVEXyVe3kq9rJVwAskq9qJ1/VTr4CYJF8VTv5qnbyFfSbBnduxd/8O7/d9RRW6tvf+2G8+N4Pu57GCv1RRPxu15NYqfJP/07XU1ip7/yPTyMELADmyFe1k69qJ18BsEi+qp18VTv5CoBF8lXt5KvayVcALJKvaidf1U6+gn7T4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFTS4AwAAAAAAAAAAAABQBQ3uAAAAAAAAAAAAAABUQYM7AAAAAAAAAAAAAABV0OAOAAAAAAAAAAAAAEAVNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgzq3Y/Su/1PUUVupPfvG9+JNffLfraazQFyLzo64nsVL5iztdT2GlfvzX/+uIiGEVBcCNyFe1k69qJ18BsEi+qp18VTv5CoBF8lXt5KvayVcALJKvaidf1U6+gn672/UEGKY//TPrXU9hpT731p3I7HoWq3Q3Ir7Q9SRWKr/8M11PYaXe/Xe/HhGx0fU8AKiHfFU7+ap28hUAi+Sr2slXtZOvAFgkX9VOvqqdfAXAIvmqdvJV7eQr6DdHcAcAAAAAAAAAAAAAoAqDPoJ7Zm41fz0upRx0PR8AgL6TrwAAVku+AgBYLfkKAGC15CsAoAuDPIJ7Zu5m5ouI2GvG88x8kZm7S25b5i9f/BkAAPkKAGDV5CsAgNWSrwAAVku+AgC6NLgG98x8HhEPIuJZRNwrpWRE3Gt+fpCZjy94iP2IOOy6DgCAWshXAACrJV8BAKyWfAUAsFryFQDQtbtdT2CVmj3/NiPifinlyezyUsp+ROxn5mFE7Gbmwfz180op97quYyAe/U+7/+nD23rwo6OjvYjYioj99fX1NrbZVkTEh2uf22/huZbWerLaWjciYisn/8mr34M7bVc2la/XuhvTfyDF+vp6XvGhdu/8P/+7W3vPrdolat0J/9gDKiBfVUW+WnGt8tWF5CuAWyBfVUW+WnGt8tWF5CuAWyBfVUW+WnGt8tWF5CuAWyBfVUW+WnGt8tWF5CugGkM7gvtOROyfE54eRcRBNB9qy2TmXmbudF3IAPRmobuk/WYMxWFEPLnxo9RlaO+5JzGs9xzQX/JVPYa21slX9Rvae06+AmohX9VjaGudfFW/ob3n5CugFvJVPYa21slX9Rvae06+AmohX9VjaGudfFW/ob3n5CvoscE0uGfmVkSsxfRUOOfZj4iNzNw44/qtmO5dBQAwavIVAMBqyVcAAKslXwEArJZ8BQDU4m7XE7gFF51SYj+mexBuXOK2Fzo6OtqKiL2ui16wdXR0VLqehFrVehNqHaYx1RoRe0dHR6092QcfvB151RNL9dTJSX54fLz0vfRofX19aHsT10K+Gtc6rNaBUuswjanWaD1fvRUjiVdxchIfHn9HvmqZfDWudVitA6XWYRpTrSFf3ZqT0/jw+IV81TL5alzrsFoHSq3DNKZao+18tXZ3RPnK/w92QL4a1zqs1oFS6zCNqdbQf3Vr+tB/NZgjuAMAAAAAAAAAAAAA0G9DPIL72gXXbzZ/Hq/o+Q4j4lHXRTd+JSI+jIhvRcTf7noyalXrVWXmny2lfKP5sZbfK7Wq9Sq1fqWU8qvN3/+HUsq/aOu5J5P49VLiva5fgzZkxu9HxN9YctV+13MbMPlqBOuwWodpZOuwWgeo03yVOZ58NZGvOiBfjWAdVuswjWwdVusAdZuv4tdLjCRf+f6qC/LVCNZhtQ7TyNZhtQ5Q599fjSZfFfmqffLVCNZhtQ7TyNZhtQ6Q/qt29OH7q8E0uJdS9jPzOCK2IuLZOTfdiojDUsrBKp53fX39MCKqOBz/0dHRZkwX4n9WyykC1KrWK9a6GxHfiIhQ63CMrNatiPjViIhSyt9cX19vccH/7l+OkXyBNZmU46G/l2ohX41uHVbrAI1sHVbrAMlX7ZhkyFctka9Gtw6rdYBGtg6rdYC6zVd/IF+xcvLV6NZhtQ7QyNZhtQ5Qp/mq/L58xcrJV6Nbh9U6QCNbh9U6QP5/sB196L+adD2BFXsSETuZubXsyszciYsDGAAAr8hXAACrJV8BAKyWfAUAsFryFQDQuaE1uD+KiIOIeJqZDzJzLSIiMzcyczciHkfEQSml6r0OAAAqIl8BAKyWfAUAsFryFQDAaslXAEDnBtXgXko5joh7Md1DcDciXmRmiYhPI+JBTAPYva7nCQDQF/IVAMBqyVcAAKslXwEArJZ8BQDU4G7XE1i1JmTdz8yHEbE5d9VBc93i7fO8n7ma5jREh6WU/SvebzMitpsfD0spTzqu49rzOesUTRERV31d2p77Ku5fU01db4uL/K2/9bfiK1/5Svz5P//nb/21ALgJ+apb8lX3a7p89dr95CuAFZCvuiVfdb+my1ev3U++AlgB+apb8lX3a7p89dr95CuAFZCvuiVfdb+my1ev3U++AjoxuAb3mSZMdf4BOkK7EfEkrvDaN6cverBw2U5E3FsWim/bCuazd97D1zz32rbFCubU2ba4jL/21/5a/KW/9JcuHbBq3D7AuMhXnZGv5KuaapKvAFZIvuqMfCVf1VSTfAWwQvJVZ+Qr+aqmmuQrgBWSrzojX8lXNdUkXwGdmHQ9AYYhMzcz82lErF3xflsxXTCeRcQHzR6cs70/H1zlsVZUx43mM7fH2ux0TIuj9rlXsy1uOqcut8Ul6tr8c3/uz/3yd77znVZeCwD6Sb567f4R8lXnNclXAPSdfPXa/SPkq85rkq8A6Dv56rX7R8hXndckXwHQd/LVa/ePkK86r0m+Aro02CO4057MLDe4+07z5/3ZHlCllEfNYrIT0wWkTauaz34Hp2C56dxr2xarmlMX2+JMs9+Xb37zm128FgD0hHy1lHxVR00R8hUAPSRfLSVf1VFThHwFQA/JV0vJV3XUFCFfAdBD8tVS8lUdNUXIV0AHHMGdVZjtkXWdD/itmC6Ai6f32I+Itbm9wNpy0/nMrj9oed6rmntN2+Kmc+pyW5znXkTc+wt/4S/8Ly2+FgD0j3z1+v0j5KsaapKvAOgz+er1+0fIVzXUJF8B0Gfy1ev3j5CvaqhJvgKgz+Sr1+8fIV/VUJN8BXRGgzs3VkqZ7aF1nYVs7Yz7zS7bbLmcVc1nOzOfZuZeZj5uafG76dxr2xarmlMX2+JMs9+Xzc3N3+vgtQCgJ+SrpeSrOmqKkK8A6CH5ain5qo6aIuQrAHpIvlpKvqqjpgj5CoAekq+Wkq/qqClCvgI6oMGdzlxyoVvr2Xxmi9zjudtuR8ReZu7ELbnp3GvbFiuaUyfbotLXAoCRqG3NkK9uXHtVNYV8BcAI1bZmyFc3rr2qmkK+AmCEalsz5Ksb115VTSFfATBCta0Z8tWNa6+qppCvgA5pcIfV2oiIw4j4uJRyr5RyLyI+iuleXo8zc6PrCY6IbQEAw2BNr4dtAQDDYE2vh20BAMNgTa+HbQEAw2BNr4dtAXRGgzusUCnlo2YczF12HBGPmh97tedan9kWADAM1vR62BYAMAzW9HrYFgAwDNb0etgWADAM1vR62BZAlzS485rM3MrMcolxmVN2nKuUst/89bxTexy2Vc8tz2f22Ley19pN597Gtmi7pnPc6rbo2WsBQAvkq1ubj3zVck3nkK8AaJV8dWvzka9arukc8hUArZKvbm0+8lXLNZ1DvgKgVfLVrc1Hvmq5pnPIV8Ctu9v1BKjOQUTcu+TtVuEwli90W3PXt1nPteeTmWsRsRkRB82eamfVe1tu+lre9rZoraYKtkU1rwUAVZCv5Kvr3r+amirYFtW8FgBUQb6Sr657/2pqqmBbVPNaAFAF+Uq+uu79q6mpgm1RzWsBQBXkK/nquvevpqYKtkU1rwXQDQ3uvKZZjPZv/ECXtx8RO5m5UUqZXyC2IuJ4bs+ptuq5yXw2ImIvIp5ExP2F67abP1cVTFc991Xcv6aaut4WNb0WAHRMvpKvKlu/5aubvxYAdEy+kq8qW7/lq5u/FgB0TL6Srypbv+Wrm78WAHRMvpKvKlu/5aubvxZAByZdT4BxmDtVze7CVY+aP582e31FZj6I6d5fTzqY6qXns1hTKeUgXi2CDzJzrRk7EbEb073ZntU496vev0WXmlOF2+JGerR9AOiQfCVf3WZNFW6LG+nR9gGgQ/KVfHWbNVW4LW6kR9sHgA7JV/LVbdZU4ba4kR5tHwA6JF/JV7dZU4Xb4kZ6tH2AMziCO50qpRxm5v2YLnovMnN21ZNSysMezueTiHja3H9+cdxvrqt27rVtixXMqbNtUeFrAcCI1LZmyFf1bIsVzEm+AmCUalsz5Kt6tsUK5iRfATBKta0Z8lU922IFc5KvABil2tYM+aqebbGCOclXQGc0uLMyzSk68hrXPcnMZzE9dclaROw3e4B1Vcel5rOspuaUPPcyczOmpy6JNuu5ydyvcv82XWZONW6Li/zar/3av/i1X/u1s2ruzfYB4HbJV92v6fLVa5fJVwD0nnzV/ZouX712mXwFQO/JV92v6fLVa5fJVwD0nnzV/ZouX712mXwFdEaDO1VoFsNqTvNx0/k0i14nC98K5l7VtrjpnLrcFrW9FgCMS21rhnxVz7a46ZzkKwDGqrY1Q76qZ1vcdE7yFQBjVduaIV/Vsy1uOif5CoCxqm3NkK/q2RY3nZN8BXRh0vUEAAAAAAAAAAAAAAAgQoM7AAAAAAAAAAAAAACV0OAOAAAAAAAAAAAAAEAVNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBXudj0BAGAV3nkv86OuJ9GSt+QXAKAF77yXk5/uehLtyLvyFQDQgnffyzv/TteTaEf6/goAaEG++17e/VrXs2ipVvkKAGiD/quaVD9BAOAy3v7liK+09mw/+MEPfv773//+fxsR8e677/4377zzzj9osdjjFp8LABitt3858sPWnk2+AgCG7+1fjslXW3s2+QoAGL53fjnutteAJV8BAMOn/6omGtwBYBj223yy7373uy///qMf/egfvPPOO60+PwBAC+QrAIDVkq8AAFZLvgIAWC35qiKTricAAAAAAAAAAAAAAAARGtwBAAAAAAAAAAAAAKiEBncAAAAAAAAAAAAAAKpwt+sJsFIHC38OmVqH6TAi9ruehFrVegPHc7Uedz0ZtcJKjGkdVuswjWkdVuswjSlzjKlWxm1M67Bah2lM67Bah2lMmWNMtTJuY1qH1TpMY1qH1TpMY8ocY6qVcRvTOqzWYRrTOqzWYRpT5hhTrVeWpZSu5wAAAAAAAAAAAAAAADHpegIAAAAAAAAAAAAAABChwR0AAAAAAAAAAAAAgEpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdKpeZG13PAWAZn09AX/n8Amrl8wnoK59fQK18PgF95fMLqJXPJ6CvfH4BtfL5dDYN7lCxzNyNiOeZudn1XADm+XwC+srnF1Arn09AX/n8Amrl8wnoK59fQK18PgF95fMLqJXPp/NpcKeXMnMzM3e6nkcLHkXEYUTs+RCDumXmTmbuNeNBZq51Padb9iginsX0MwoYAPkKqI18BfSdfAXURr4C+k6+AmojXwF9J18BtZGvmKfBnb7ajIjHzYfY88zc7npCt6GUchwR92JEISsz15rtupuZW13Ph9UY8nZtanseEY+bi9YiYjciHnQ9t1uqdyNi+vlUSrnfXDaKzycYAflqoIa8Do/ZkLerfCVfwYDIVwM15HV4zIa8XeUr+QoGRL4aqCGvw2M25O0qX8lXMCDy1UANeR0esyFvV/lKvlpGg3uPjWQPuqVKKU8i4mFMP8QiIva7ntMte9T8OegPsaa2T2O6MG039Q5mMZ4tTPP1ZuanmVmaBWqQe5wNfbtGxF7z58ellHullI+bvz/semKrds5pcdZi4J9PjId8JV8NzdDXYflqmNs15KsI+YoBka/kq6EZ+josXw1zu4Z8FSFfMSDylXw1NENfh+WrYW7XkK8i5CsGRL6Sr4Zm6OuwfDXM7RryVYR89QYN7j3VhKvHmfn4xg/WX1sx3bNuM6Yf2oMztzA9bmod+ofY04h4Vkr5oJTyUUR8VEoZRHheXJiasLUXEQcxDdCbMd22QwxZQ96uD2K67T4ppRzMLp//+8C8cdquMe7pzHDJVxEhXw3RkNdh+WqY21W+kq8YEPkqIuSrIRryOixfDXO7ylfyFQMiX0WEfDVEQ16H5athblf5Sr5iQOSriJCvhmjI67B8NcztKl/JV0tpcO+pZg+6JxGxM+KQdb/5sL4f07A5qD0qm4V2L14tTB9HxEcx0A+xZo+yjZjuGRoREaWUw7nr+759FxemnYjYL6V80uxp9lFzu16HrCV7SQ59u27F9Hf08KwbNKfQeTyEvSbPClNCFkMhX0WEfDWoz68RrMPyVWNg21W+CvmK4ZCvIkK+GtTn1wjWYfmqMbDtKl+FfMVwyFcRIV8N6vNrBOuwfNUY2HaVr0K+Yjjkq4iQrwb1+TWCdVi+agxsu8pXIV8to8G9x0op9+MKIavPH9rzNWTmTmZuzz7QmrA5xJC1HdM9Bmenx5ktTEP/EHvjfTq3x2xvF6jFBSimoePZkusjehqyzjl9SsRAt2u82pP5Itsx3RO494Qshk6+kq8G+vk1yHVYvhrmdg35Sr5icOQr+Wqgn1+DXIflq2Fu15Cv5CsGR76Srwb6+TXIdVi+GuZ2DflKvmJw5Cv5aqCfX4Nch+WrYW7XkK/kqzNocO+5y4as5oPs08W9e/pk4XQxT5sP89nr8EbI6vmHdsSrBel4/sLmQ+yTGMDpcprAPNtOs1OKvBGSm+0bMV3MemthAdqO6alVll0f0c+Q9SimoXE+cAx9u+5fNP9muz6KiI0+/b42v5+7mflpZpZmPM/MHSGLoZOvXr4O8lUPyVfyVfPXPm9X+Uq+YoDkq5evg3zVQ/KVfNX8tc/bVb6Srxgg+erl6yBf9ZB8JV81f+3zdpWv5CsGSL56+TrIVz0kX8lXzV/7vF3lK/lqKQ3uA3BRyJrtpRMXnMahZk0w3Ivph/cHEXGvOa3I/OswH7JmQazPZnuXPVi8Ym47zhbqvnoczeI0twg9WNwTdC5o9PL9O29uATqI6e/seSHrwRUfvhOzkFxKOW4+jyIz9zJzcwTbdT8iNi8RJGZBsxehee4UXQ+aGh/Fq72ZH2fm8+bvF4WsPn8+MXLy1cvXQb7qH/lKvoro93aVr+QrBkq+evk6yFf9I1/JVxH93q7ylXzFQMlXL18H+ap/5Cv5KqLf21W+kq8YKPnq5esgX/WPfCVfRfR7u8pX8tVypRRjICOmi1WJiMdzl+0sXtbHERG7EfHpwmVbTc17EbG9UPPTiNjoet4rqPtpRLyIiM2Fy9ea7brZ9RxXsF33Fi573tS2G9PTyGw2lz2PiLWu57zC2teaml70eTvOfe7snFfbELZrM+fd5jNmba7WFxfVMfdZ3IvPpblts7nkugfzNQ/lvWwY5/w+yFdFvurTkK/6vybJV/LVUN7LhnHO74N8VeSrPg35qv9rknwlXw3lvWwY5/w+yFdFvurTkK/6vybJV/LVUN7LhnHO74N8VeSrPg35qv9rknwlXw3lvbzy17DrCRiXeqPvXOG2L0PW3C/0btc1rOA1eBwRz5u/rzUfciWmp8z5tE8fXOfUuDlXy7IPrjcWpq7nvIKatyPixZLLZ9u3zL0evfzgXrZd567r/cI0V9tlQlZvt+t5c2/ex29s34XX4tPFf0zUOubWjs1zbrPV3ObpUN7LxviGfCVfyVf9WYcvs13nruv9miRfyVdDeS8b4xvylXwlX/VnHb7Mdp27rvdrknwlXw3lvWyMb8hX8pV81Z91+DLbde663q9J8pV8NZT3sjG+IV/JV/JVf9bhy2zXuet6vybJV/LVUN7LK38du56Acek3+qX3AJwLWa994NU+4vy9b2a/zLMP8xez2uLV3nS9DZJNcHoR0z0Gd+PNvXN6uTBFxNbiNo5Xe2BtNnWXcxalrT7UeZ3tulBnbxemZlvOarxMyOrddp37TH3QbNMHs9/Dhddh9tn0YPYPviZ8zV6Dvuwp+fQyYXDuc2lW62x79/az2BjPkK9eXidfyVe9G/KVfCVfGUadQ756eZ18JV/1bshX8pV8ZRh1Dvnq5XXylXzVuyFfyVfylWHUOeSrl9fJV/JV74Z8JV/JV+MdnU/AuNIv91VDVp/C1fyejxtn3Ga7+cV/sGSBKjF3mpxax2LgmLt8N5o9ceZqeu30Ic0H+9ZZj1HbmNumm3OX7cT0lEZlYcz2eO3NonvJ1+DC7bpweS8XpuYfPrtxydPl9Gksq2lu25b538fmHw3L3t970aM9nC/7Xpz7B1Iv37eGIV+9vI18JV/1ashX8pV8ZRj1Dvnq5W3kK/mqV0O+kq/kK8Ood8hXL28jX8lXvRrylXwlXxlGvUO+enkb+Uq+6tWQr+Qr+Wq8o/MJGFf+Jb8wZEVP9lJZ8kv6YmHB3bioxvkFq+s6rrAN5wPHWnP57mJAPGsx7sOYq3X7nNtsNqF5/jRH8wtSL4JkU8vuGLbrOfXP9iJciwGFrKaWF7HkH6vxao/BrSXXbTb/ENztU71z89+LS57OZxauu56zYdzw91y+WqhRvqpzyFfD3K7n1C9fvfnelq8MowdDvlpeo3xV55Cvhrldz6lfvnrzvS1fGUYPhny1vEb5qs4hXw1zu55Tv3z15ntbvjKMHgz5anmN8lWdQ74a5nY9p3756s33tnw18tH5BIw33qznnSbmwpA190HXm71V5mp70XwwzZ/i542gFa9OOzL7wP609g+xswLH3MKzdC+cPi7G89vykrd/uZdds/13ogd7gy55Py6eBmZQ2/USr8PLhfaCkNWLxThenZZr6TZqLv+063neUu2vnfrmgtvag9DoxZCv5Kszru/NOixfDXO7XuJ1kK8GMuQrY4hDvpKvzri+N+uwfDXM7XqJ10G+GsiQr4whDvlKvjrj+t6sw/LVMLfrJV4H+WogQ74yhjjkK/nqjOt7sw7LV8Pcrpd4HeSrgQz5akWvY9cTMF57o17mNDFnhqx4tUfLpU+lU8uY+zDbaX7eWAhar+1RFq9OtbJb+wJ1UeCIC/au6tPCdF6tTXhadvmDvi9UTW1nhazeb9e5bXveZ9PLvQgXPqt6c6quM2p6I2Rd9R8RfRvxaq/upxfcbva53Zt/EBnjHPKVfNX3dVi+kq/kq/4P+coY2pCv5Ku+r8PylXwlX/V/yFfG0IZ8JV/1fR2Wr+Qr+ar/Q74yhjbkK/mq7+uwfCVfyVf9H/LVil7HridgvPGGvvA0MctCVp/D1VwNe4sLbbzak2Vp0Kp9XDZwXLQY92FcotYXsXxvutmHdNVB+RL1Xzlk9WXMfb5c9Nn02ulShhiyhh6u5uqeffY+PuP62Xv7UqfSMYwO38vylXzV63VYvpKv5KvhDPnKGMqQr+Srvq/D8pV8JV8NZ8hXxlCGfCVf9X0dlq/kK/lqOEO+MoYy5Cv5qu/rsHwlX8lXwxny1Qpew64nYLz2hr3KaWLm9zacfQD0Yk+kc+pf3IvwwezneHOPwgddz/cq23PJdW8Ejj4vxnHO6USa616cF/6b+/YmOJ9Tx5BD1vxnzl7z96fx5p69L+LNve16+w+/ubrK4rYd+pjb5s+b12CtGTtNmO7d6diMcQ75Sr7q6zosX72xXeWr1+8nX/VwyFfGUIZ8JV/1dR2Wr97YrvLV6/eTr3o45CtjKEO+kq/6ug7LV29sV/nq9fvJVz0c8pUxlCFfyVd9XYflqze2q3z1+v3kqx4O+eqGr1/XEzBeezNf9TQx89f1dg+dhddgr/nFXbrnUfPLXf1CfN3A0efFOJacTmTudXh80evV9fxX+DqMIWTtNNt2b/GzKRb2IuzDaLbPbjP3Mvc+3pm7zc5Zv9NDHhGxvfC6zMbTMb0ORr+HfCVf9Xkdlq9e1iJfyVeDGfKVMYQhX8lXfV6H5auXtchX8tVghnxlDGHIV/JVn9dh+eplLfKVfDWYIV8ZQxjylXzV53VYvnpZi3wlXw1myFc3eO26noDxxpv5SqeJaT7wBhGu5n6ZBxEarxs45hbjXi1SS2p+cF6tzW0HuVhdELJ6t10XanvtHz9LgtZsz9lebNe57TLbO3K3Gc+X/P6OMmTNbecHzWtgr0Gjd0O+kq/6vA7LVy9rk696sl3lq0u/TvKV0eshX8lXfV6H5auXtclXPdmu8tWlXyf5yuj1kK/kqz6vw/LVy9rkq55sV/nq0q+TfGX0eshX8lWf12H56mVt8lVPtqt8denXSb666mvW9QSMpW/i+Q+vXp8m5pqvwaeLIbOvY4yBY67mi2q9cM/CPo9lIWsoI5bs4bsQtHrzD6Tmd+55LD+V1YNm+wlZhtHzIV/JV33/zJavXtYoX1Uw10vUIl8ZxgiGfCVf9f0zW756WaN8VcFcL1GLfGUYIxjylXzV989s+epljfJVBXO9RC3ylWGMYMhX8lXfP7Plq5c1ylcVzPUStchXxu28t7qegLH0F34Qp4m5Qf07ffqAvkI9owkc5y1CQ6v1gtdhPmQNaq+rcz6ftiJiu+v5XfF9unnObWb/6H16mfe3YRj1DvlKvur7kK9e1ipfVTzkK8MY15Cv5Ku+D/nqZa3yVcVDvjKMcQ35Sr7q+5CvXtYqX1U85CvDGNeQr+Srvg/56mWt8lXFQ74ybnNk82ahIpm5HRFPmx/vl1KedD2nDl6DTyPiuJTycddzWVE9OzFdkA4i4l4p5XjJdU9KKfe7nutt1jx32aNSysOu59jS67AZ0wV8cL/Hmfk4pmGjl59Tmfk0pgHp3gW3243p3oQflVIOm8tmp4oZxfsYhkC+kq+GQL56+TrIV5WSr2Bc5Cv5agjkq5evg3xVKfkKxkW+kq+GQL56+TrIV5WSr2Bc5Cv5agjkq5evg3xVKfmK26TBvVJNwIhSykddz6Wj+mcL8cellIOu57PimkYTOBZqfhYRu0Otdaz6HLIy83lE7F/0fszMjZju1e29Cz0nX8lXQyBfDZ98BfSJfCVfDYF8NXzyFdAn8pV8NQTy1fDJV0CfyFfy1RDIV8MnX8Fyd7ueAGd6FBGPM3Onbx9aq1BKeZKZMZRwNV9TTAPHXmYOPnAs1LwZPVyEOV8p5X6zjTe7nss1HF9m3qWUw8w87HqywErIV/JV78lXwydfAT0jX8lXvSdfDZ98BfSMfCVf9Z58NXzyFdAz8pV81Xvy1fDJV7CcI7hXbGiniWFqbq+6iJEEjqbmGEOt9MeyU9+cc9sSA/7HEIyJfDVM8hXUQb6CcZKvhkm+gjrIVzBO8tUwyVdQB/kKxkm+Gib5CuogX3GbNLhXbIiniWFK4IDuzZ365lkp5ZNzbrcVEXsR8Ukp5VnX8wZuRr4aLvkKuidfwTjJV8MlX0H35CsYJ/lquOQr6J58BeMkXw2XfAXdk6+4TRrcKzfWU+QAtGFuL8InpZT7S65fi2m4Oi6l3Ot6vsBqyFcAt0e+gnGSrwBuj3wF4yRfAdwe+QrGSb4CuD3yFbdFgzsAo5aZjyNiJyIOIuJJRMz2EtyOafhai+me3IfXewYAgHGRrwAAVku+AgBYLfkKAGC15CtugwZ3AEYvM7cjYjciNhauehYR90spx13PEQCgT+QrAIDVkq8AAFZLvgIAWC35ilXT4A4AjczciojNiDiOiH17DQIA3Ix8BQCwWvIVAMBqyVcAAKslX7EqGtwBAAAAAAAAAAAAAKjCpOsJAAAAAAAAAAAAAABAhAZ3AAAAAAAAAAAAAAAqocEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqcLfrCQxFZm5FxN7cRZ+UUp5d4n67EfFg9nMpJZc85n4p5V7XNdYqM3ciYjsitiLiOCL2I+JJKWW/zcfMzI2YbsutiNho7ncQEc9KKU+u+PyPI2InIu5d8JzXmefa3Dw3L7pf8xwbl517KeXhdV93ALiJPmSnGuZYwxxusbYXMc00o8wjteTiJY9x4XZpsvTOBQ91eFauvmEu3mzuFzHN7/sR8aiUcrzw+DIxAAAAAAAAALRAg/vt2YqICxvcY9qEwTVl5tN4/TVca37ezsz7V20sv+5jNg0vjxcuXovp+2ArM7dKKZ9c8vm34+LmnuvOczOmDW1rV7jfrFHosjTzAACvaXbqjJg2HB/e0nNsx+sZZ1RqycVLHuOy22U75nb8PcN+RCzLuKvKxRHTZvfNiNjJzHullIO5+cnEAAAAAAAAANCCSdcTGLALG9ebporzjgJ4GBGP4nKN8qPTNEptx/QIjfebo99/EK+aXh43r/GtPmZztMlZ09aziPho7n6zxpbtucau855/I95slF/lPGdNPPsR8fHc/R7N3W+xcedZc/15Y3/utgDQFdmpXg+acekjYF/FQh4bnVpy8ZLHuMp2mTWa78fZmfPZkue47jyfNs95GNOzb2Vz30+ay9aa28zIxAAAAAAAAADQkiyldD2HQWiagveaH5/FtMnik1LKs3PusxvTRp/Z7aNpquACmbkWEZ/GtPHkjaMyZuZeNEfRv8KR06/1mJn5IKaNO/ullHtLHne2nQ9LKR9dMIfZcxw387hXStlfuM115/k4pkeGPyilfHzOPJfWcYnXLWLa3H98xc0JAKMxlxmvtN72fQ6ZOftHxxvZ5oZ1bMX0aNvzO+g9KqWM5ujZNeXi5rprbZe5x7z00eZvkIvnz7700eJZBZrG/OdnPe4Fc5k9pkwMAAAAAAAAANfkCO63Y9a0c9Ep7LcXbn8lmbmWmVuZud38uXadx+mp7WiOuHhGw8nsiOTbV3hdrvuYs+18cMbjzrbvuUcsbRrMt2J6tMnz5nzTeZ7VoDO731bT1HNZj+NV849GHgBuRWZuNnlnZ8nZRq7zeGdmqMzcmLv+Uke9XsxlK6h1+yrPv4LX48rP2cU8F2zFdOe8G78feq6mXBxx/e0ye5zDK9znuvOcZd1ni83tERHNZbMdlS/73paJAQAAAAAAAGBFNLjfjlkzxPZZN2iagDZi2hR9eMZttjKzNEceXLxuN6ZHCNyLiKfNny8yc/eyjSuZ+bR5/N1lj99cV5Y1aWXmp811Dzp6jWeNJkt3Dlg4Muhlm1Ku+5gHzX2ufTTS5v3wIKbvhYuOOHrdec4aeQ7PuN9xXH7njNm8t2P6Pn923tkKAOC6mjz0aUyPprwX0ybSvcx80RyFefG2b2Sn+cubpuzFDPVp0zi/lplP4/WM9by532IT/N4sJzXzeO0xl83vErVuz9X6dO75P11FU/8Zz7mRmc+XPOfeWZnyKvOcvU5zF+2dlS+v4UlE3Jsblzrq9xk1ycWre8zrbpfZ4xxc8vY3mefs7+c108+a1C/c8VMmBgAAAAAAAIDV0uB+C5pG4WcRsdY0Oywzu/zKDRCZ+TimzdBrzf0fzT3Og5g2GV3Gec3MW2f8PZqje7886uGtvZDnmz3/eUdHnNV32Uaeaz1mKeVhKeXeQgPNvHOP8N40jz1ufrzMER9vo/aznuNMzbx3m3ncv+bzAMCZmh3A9mK6Lh3GNPM8iumauhYRj8/JWstsNI93PPdYh81j7TbXbce0IfdRvGrM3WquX2Y7Xq3jTxYe8/Flm56bZvin8WoHyPn5bcS0MfwqtV7G2tzrO3u+c2u+xjxnOwIu/nzjI1yXUg5LKfuzccPHlItX9JjX2S5LdiDZaXYs2M3MB+ecXei683wYFzffX3SWpvm5y8QAAAAAAAAAsEJ3u57AgO3HtOFpK5Y3u8w3uF/YTDzTHDVydjTQ15qqmyaw5xGxlZnblzh64Mtmj8zcKKUcNo+zFsuPcDgza/Y4nN2nA+cejXzBpY5ov8rHbLbFWkxfq1lj21lHZn8Q09f40TlN8quY56zxbDOWHOWy2e5XOZrqg+bxHl2iKR8ArmOWeZ6VUj6Zv6I50vrLoyZf8vE2Fh8rM5/E9Ojrs/zzcSnlYO7645iueWetkTsxbYC9N7cePmx2SNyJiN3MfHZeZpprkI2IeFhKeTR39fxjPc7M/RWuu5vN3D+ef8zMPGzmsxNzDbvXmWcp5WFz3zJ3v2uf9eYWycW3/5jnmT+i+uz3cd5uZj6avZ9uOs/53/Flmp00ZnO66PNFJgYAAAAAAACAFXME99sza4R440ibTfPzRkQcXKMRZtbo9UYzdNOoMTsK4YVHZ2yee9bcMd+0NbvvkyXXzV/f1VEqI67WzNLqY2bmbkx3NNiLacPLcSzsjDB32+3mNgdLGnZWPc/Z8+8sHiWzMX+U1nPfP81RNGe1PQoAuB3nHRn7YUzXoKs2S792hOUmD80e48mSxtfZdeftkPjJYmNrKeV+vFqrd+J8OzFtvt1faBqfr3V2VPhVH8X94ZK5n7W2dznPWyUXt/KYl3m+jXiVL+/F9D01+x180OTsW51nc9aF2VkZHp3XDC8TAwAAAAAAAMDtcAT3W1JKOc7MZxGxveRo6vNHb7+qi+77qLnuskcP3I9pY858Q/OsceegGZuZuTXXoL01d98LNY0oFzbcz3l40VEVKzffKLcV0yavx5n5ycIRYddi2jxzHAvNdrfkYUzfPxsR8bw5Yu1B8/PsbAPHzXwvev/Mjkr/xJEqAWjBg8UjlzcNyZfdOWzm4IJ16zpr2nlHZ38Wr87Ucp6tudu/ocmV+zFtML/0mX8u4fiKR1Pvap5tkYu7M3u/LJ4NYT8iHs2dHeBBZj65jaPlNzsh78arbfrkEjugysQAAAAAAAAAcAs0uN+u/XjVOHzjBvem6SIiXh6t/Q1Ns8dVGj72Y9qYsexIlfsxbTbZbK7fnzv6/FUaojbjzaNdnmftCretTinlSTRH+Wya2Hdj2pCzl5kfzTW/PG1qbaVxqWk6u9c870a8fsT2aOa8EdNtdeZ7qDlS5U44UiUAt+9JTNelzYh40ew8eBDTRvWrHrk94noN7Bc5L3cty1nLzK7fXHKE6plZA/BVmqMvctX80dU82yIXd6RpJH94zvX3M3Mrpq/3Tlx955YzNXn9QbxqVj+OaT5/csH9ZGIAAAAAAAAAuCUa3G/Xs5geoXsnMx82DcazRpiDaxx5cOUNLqWU/cw8joiNzNxo5rQVEYellMPMnDU+zZp7rnSUyuY57q163s3zzxrertPg1spjNtt8duT0tebPJ02DzqyR/KD5ed7sSOqbmTl7rNmcrj3PppH+o8ycHVl1M6bNbfvNe2HvEg+z0/z5zJEqAbhNpZRnzc5Zs6bj7WZEk1+eRMSjAa1HOzd/CPO8Lrn41h9zFXPaidd3nrjRPJt/m812/rzqZ4pMDAAAAAAAAAC3RIP7LWqam5/Fq2asJ3HNo7ffspdHms/Mw7nLZo1lEXNH7Jy/vgJrl7hulTsSvPaYzREfN5vXaulr0rwPDmL6Gm4sXL0REec1lc8fHTVXVfs5R6Scze+8I7rOmnnOPaolAKxCs77uN0dLnjWyztbUWeP7x13Pc0UexsVHVa+hkbYv87wOufj2H/O6zntPXXmezQ6msxy+HxH3r7gDskwMAAAAAAAAALdEg/vte9kkEzdvcH/ZSDR3VMnXNM1fOzE90uRlmy3m5zh7zIOF67fmjjp+pfnPHS38sp5corlk1jC+uezK+cbzuLgB6yaPuRavGmMyLu84zm+G2mwe+yDebOa5jdpn751zG9wzc3Yk+sPmaPAA0IomG7zMNs2a9DSmZzvZOmtHsxac11h72fX4oLntQYd1XEZf5nkTcvHtPeZ5r8tWxNk7jC6Yfz2uNc/m8qfNj09KKfevOF+ZGAAAAAAAAABukQb32/cspkfh3m4aNzZi2hR05SMdNkcCP2weYzsiHi252U5Mj2b6LC5/NMFZI8lWvGr8mG8umTWO7ETTdF1KucpROWdNQpe1HxcfCfJZU+dWZq4tmc9sR4KrNJ1c+TFLKYeZeRwRa5m5XUo5q8Fp1sh02NzvICLunTWRzCzNXx8uafS5Vu2Zudvc76wmntlRKM97f165kQsArqPZ8erT5scPFte75mja+/GqubWrhuvtzHx4RjaarZuXbXDfPquOzHze3Ob+FXZiXLW+zPMm5OLbe8zzPI1pnj7vfTN7zvnnu+48H8R0++1ftbm9IRMDAAAAAAAAwC2adD2BoWuaLGaND4+bP2/SCDFr+HiQma8dqbA5EuGsSfnSTV5NM/NBTJs8tmLaADLfSDN7rO2rPnbjYUybuS87LmySaRpUZnN8sOR1mF32xmudmTuZudscQXMVjzn7+UFzu8Xn241pg/txrKAJ5gbznG23nSXvnc149d45rxltWWMRAKxck0Vmzao7i9cvHJm5y6OJr8V0Z8bF+T2IyzfBzq7fWcwnc4+1GSvKEjfQl3lem1x888e8pmvl6RvM8+XOJ5m5dcFYdsR9mRgAAAAAAAAAbpEjuLdjP6aNWbPmiGs3gpRSHmXmdkybh/Yy80m8fjTN2ZEkr3rEzP04o0mslLKfmfMXXWn+Kzqq4zL3I2IvXjXCPGvqfxDT1/owlh/lfnbkzP14s5n7Oo/5qHnMzYh4npnP4tU22YxXDTQPr3iEz5XW3mzH2ZFuZ++d2RkBZkchfXLWe6dpgp81HHXZSAjAeDyJ6dq22zSZHjZjtmPW7AjMXTaZHse04XsjXj/692z9f7TkbCyvadboR02tj5s1d1bT/E5oq8wSV3bDeR5H0zTe5MqrHvm8TXLxzR7zOh42c9mIiE8X/o0zn6fvL3nfXGees+37IBYa45d41MwvImRiAAAAAAAAAGiDBvcWlFKeZeasqedg4SiQ13EvIp7GtNFjsSHjoLn+qp7NPdayxptZY/Rhx01kLzUNRvdjetTUnXj96K4HsbwBZuWPWUo5zMzZNtmIN7fJcUwbva6608Ft1P5JnP3eeVRKeRhnmzUWHVbckAbAgJRSHjaN49ux5CjuMc0nn3Q8zScxzXg78WqtnLlobV2sNWK6Pi/WuvIscV03mOez5vazhuJ7UW9zsFx8S495znMdN3l6N5bn1OPm+Z4tue+V5nnGEdmvQiYGAAAAAAAAgFuWpZSu58A1NUcP3J676FktTTYtvw6zprLZkRQPljW/tPGYc0fXnzmM6Xa5leaXG8xz/r1z3MzxpjteAMCtaNatrXi13h1Hx0duz8y9Zk6PmqbvxVz25Dpr61xD/6zWW80SN6j/yvPMzAdzt7/W68P5asrFN3i+xd+ly+bbVucJAAAAAAAAANweDe4AAHBFiw3uXc8HAAAAAAAAAACGYtL1BAAAAAAAAAAAAAAAIEKDOwAA9Epm7mZmuebY6nr+Q6kBAAAAAAAAAIDbcbfrCQAAAFfyJCL2r3nfg64nP6AaAAAAAAAAAAC4BVlK6XoOAADQK5m5ExEbEbFfSrluozYAAAAAAAAAALBAgzsAAAAAAAAAAAAAAFWYdD0BAAAAAAAAAAAAAACI0OAOAAAAAAAAAAAAAEAlNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFe52PQFW5+joaDciNiPiYH19/WHX81GrWq9R605EbEdErK+v3+t6PmpV6zVq3YyI3ebHh+vr6wddz0mtcDMjW4fVOkAjW4fVOkBjyhxjqhUAAAAAAADgPBrch2UzIra6noRa1XoDG2odpDHVujZX61rXk1ErrMSY1mG1DtOY1mG1DtOYMseYagUAAAAAAAA406TrCQAAAAAAAAAAAAAAQIQGdwAAAAAAAAAAAAAAKqHBHQAAAAAAAAAAAACAKtztegIDttGM1rzzzjsfnJ6exmQy+SAitlp86p+MiH/TjKHX+vlm/J5aV++99977ymeffTb7Ua235ydHVOvPRMTvtPVkX/jCF37++9//fkREvPvuuz+v1ltzHBEHLT8ndZCvhlmrfHWL5KvWyFe3RL5qjXwFAAAAAAAAVCNLKV3PYaD+8Dcifv9XI37U9URasBbT3qvPbvpAPfB+TE988N2uJ6JWtd7Alz6L+M5IdnD6ydOI3xvJ2UrGVOvn/s+I9X+761nQhX/zG3H6nXHkq/wgonw3xlHr5yM++yzisxddz+T23flSxN13I8rvdz2T2zf5QkTejRb30ehW+bHPorwYR76a/IkRZY6fPI3TfzmOWifv/58Rf0y+AgAAAAAAAKowjv+A70gp/zoiht+ok/n/iFL+75ge8G3ofioy70Yph11PRK1qvbbMr52UcjiKz//MtTKe7TqmWn92DHtUcYZy+nsR5dtdT+PW5d3N0dQak69GfvajKN/7ZtczuX3vfT3yzpeinPwfXc+kBV+NvPO58eSr+OmTcvo748hXk/VSyqddT6OdWvNLpZy2dgD3jmv9+meRXc8CAAAAAAAAYGocRyIDAAAAAAAAAAAAAKB6GtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoQi8b3DPzcWaWzHx+xvV7mbl3wWNceBsAgLGQrwAAAAAAAAAAgBr0ssE9IrYj4jgiNjNzo+vJAAAMgHwFAAAAAAAAAAB0rncN7pm5ExFrEXG/uWi76zkBAPSZfAUAAAAAAAAAANSidw3uEbEVEYellGcRcRAasAAAbkq+AgAAAAAAAAAAqnC36wlcRWauxbTh6lFz0bOI2M3MzVLKQRdzOjo62oiIncXL19be+blJH3cfAMbgTtcTaE9m1zNQ6+qdnsbaixdHu0uu2l9fX9/ven5906t89aW3f068AuqUI8pXMZrMMaZaT09j7cWxfAUAAAAAAADUoVcN7vHqaKJPmj+fRcRuc3knDVgRsRERDxYv/Oyz03j77Y5mBHCOUnr32X+DWstoemHHVWt+MZasvQ0NWFfXn3x1chpvj6mFFOiNUop8NUDjqjXkKwAAAAAAAKAaffvP2p2IOCilHEZENH8exKvGLAAArka+AgAAAAAAAAAAqtGbo8xl5kZEbDZ/L0uu3yyltH6U0eZU3UtOW/6Hv1FK/Gr7rxTA+TLjB6XEO13Po6VaT0qJURzveUy13rlTvrW+vv7VrucxBP3LV//mN8pn8hVQn8z4QYmx5KscTebIzJMS46j1zp2QrwAAAAAAAIBq9KbBPV4dRfSTiDieu3wtIp7G9Oij97ueJABAj8hXAAAAAAAAAABAVfrW4H5QSnm2eEVmHjTXa8ACALg8+QoAAAAAAAAAAKhKLxrcM3MzIjYj4uEZN3kWEbuZuT3XoLWWmVtLbntcSjm4wm0AAAZHvgIAAAAAAAAAAGrUiwb3mB49NGLaaLXMk4jYjYitudtsRsTektvuR8S9K9wGAGCI5CsAAAAAAAAAAKA6vWhwL6U8jLOPLhqllOOIyLmfL2yeusxtAACGSr4CAAAAAAAAAABqNOl6AgAAAAAAAAAAAAAAEKHBHQAAAAAAAAAAAACASmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpkKaXrOQzU9/5qRPyVNp+xlPITp6flvckk/ygz/6/2njl/MqK8HRFtvpkmESUjskTEaXtP+1ZGfJYRpcXnHFWtGVGaHW/yRK235c4k4mQktd6dRHzWYq0l49XOY6fN761aV+5HfxTxxS+093zU4w//apQO8lUp702y5XyVHeSrUiYRkRFRIrPdzHH6/Ywygnw1eScjT9vPHKVZh7PtfHUyonw1aT9fdbJdIyLeGlHmuNNyra9t19No9d/YP/qjiC/JVwAAAAAAAEAVNLgPyNHR0V5EbEXE/vr6+r32nvkPf6OU3/nViBddvwQt+EpkvhWlHHY9kRb8VGTeVesAZX7tB6X89jtdz6OdWjdPSjm40/U81LrqWn/2WxF//Ktdz4Nx6C5fffc3yo/+ya/G6be7fglu352vRv7gh1H+zfOuZ3L73v/3I9/7IMpn/7Trmdy+OxuRd98fT74qP/2DcvK/jyNfvfUfnpTyfCSZY/Ok/OjvjqPWO//et2LyJ+QrAAAAAAAAoAqTmz8EAAAAAAAAAAAAAADcnAZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqjCoBvfMfJyZJTOfdz0XAIAhkK8AAAAAAAAAAIA2DarBPSK2I+I4IjYzc+Oqd87M3czc67oIAICKyFcAAAAAAAAAAEBrBtPgnpk7EbEWEfebi7a7nhMAQJ/JVwAAAAAAAAAAQNsG0+AeEVsRcVhKeRYRB7GkASszNzLzcWZ+mpkvMvNpZm421+0299nMzL3Z5QAAIyZfAQAAAAAAAAAArbrb9QRWITPXYto89ai56FlE7GbmZinlYO6mexFxHBFPmp+3m8s+iIjDZmzEtIHr+DLPfXR0tBERO12/Bo2fnv15dHS029aTrq2983OTIe0qAcN3p+sJtCez6xmodfVOT2PtxYul69z++vr6ftfzGwr56qVu8tWX3v458Qp6JHNE+SpGkznGVOtpibUXR/IVAAAAAAAAUIdBNLjHq6OJzhqrnkXE7IihBxERmbkV0+aqe6WU/eay/XjVqPUkMzciIkopD6/w3BsR8aDrF2DBh23O6bPPTuPtt7suGbisUgbz2X+JWsto+kPHVWt+Mc5e5zRgrY589boP25zTZ5+dxttjapeFniulyFcDNK5aQ74CAAAAAAAAqjGU/6zdiYiDUsphRETz50G8asyKmB49NCJiJzM3m9sdlFLuLRyFFAAA+QoAAAAAAAAAAOhA748y1xwVdLP5e1ly/WbTaHWYmfdjekSy55l5HNOjkD2ZHXH0OppTdVdx2vKjo6O9iNiK6SnE77X3zH/4G6XEr3ZdP3A5mfGDUuKdrufRUq0npcQojoE8plrv3CnfWl9f/2rX8xgy+eqV7vLVd3+j/Ei+gr7IiB+UGEu+ytFkjsw8KTGOWu9MQr4CAAAAAAAAqjGEI7jPjiL6SUTcmxufNJfvzG5YSnlSSvkoIj6OiEcRsRERe5m5ffmnAwAYPPkKAAAAAAAAAADoRO+P4B7TBqyDUsqzxSsy86C5/n5mbkXEVinlYSnlICIOIuJRZn4a0yOUPrvKkwIADJh8BQAAAAAAAAAAdKLXR3DPzM04v3nqWUSsNUcQPY6IB5m5O3f/rZgeZfS461oAAGogXwEAAAAAAAAAAF3qdYN7TI8eGnF2A9aT5s+t5qiiT2LahFUys0TEXkTsl1IeNbc7joitzHzeNHcBAIyNfAUAAAAAAAAAAHTmbtcTuIlSysOIeHjO9ccRkXM/38/MJxGx1lx03DRmza5/lJmznw+7rg8AoG3yFQAAAAAAAAAA0KVeN7hfx3zD1RnX73c9RwCAPpGvAAAAAAAAAACAVZl0PQEAAAAAAAAAAAAAAIjQ4A4AAAAAAAAAAAAAQCU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFTS4AwAAAAAAAAAAAABQBQ3uAAAAAAAAAAAAAABUQYM7AAAAAAAAAAAAAABV0OAOAAAAAAAAAAAAAEAVNLgDAAAAAAAAAAAAAFAFDe4AAAAAAAAAAAAAAFRBgzsAAAAAAAAAAAAAAFXQ4A4AAAAAAAAAAAAAQBU0uAMAAAAAAAAAAAAAUAUN7gAAAAAAAAAAAAAAVEGDOwAAAAAAAAAAAAAAVdDgDgAAAAAAAAAAAABAFTS4AwAAAAAAAAAAAABQBQ3uAAAAAAAAAAAAAABUQYM7AAAAAAAAAAAAAABVuNv1BBiC/IeZ/8432nzGUspPnJ6W9yaT/KPM/L/ae+a3Px/xwy9nrp+2WO4komREloho8XnfyojPsuVaM6I0O97kiVpvy523M3+xzefssNa7k3ZrLRmvdh47bX5v1bpyP1pv77mgK5N/mHf/VMv5Kn7itJT3Jpl/lBnt5at85/NR/vDL+cU/0do6XCImUSIjo2Sb+eruexmTkvn2T7SbOUqzDmeL63C+nREnmfnlceSrnLydk/+oxefMjHLa/naNiIi3J5m/NJLMcWeSb7W4Xctr7+HTyGiv1vJD+QoAAAAAAACohgZ3VuBzfz0i/nqbz/jtbx/tRcRWRPyv6+vr91p86q2If7lXyqd32qy3kRHR4vN+JTLfilIOu6g12q31pyLz7khqjcj82g9K+e13xlHr5kkpB11t11bPkjKuWn/2KOKLHZUKbXn/r0eOJ199+79/tvd////+u8Hnqy//5385fvy//E+i/MFvDj9zfP4/iPJjfzJOy78Yfq0Rcfezf+sH5Q//7jjy1dr/66SUvz+OzHH6H5yU7/ydcdT6+W8cxTsfdFQqAAAAAAAAwOta/Q9TAAAAAAAAAAAAAAA4iwZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAAAAAKiCBncAAAAAAAAAAAAAAKqgwR0AAAAAAAAAAAAAgCpocAcAAAAAAAAAAAAAoAoa3AEAAAAAAAAAAAAAqIIGdwAAAAAAAAAAAAAAqqDBHQAAAAAAAAAAAACAKmhwBwAAAAAAAAAAAACgChrcAQAAAAAAAAAAAACoggZ3AAAAAAAAAAAAAACqoMEdAAAAAAAAAAAAAIAqaHAHAAAAAAAAAAAAAKAKGtwBAAAAAAAAAID/f3t/EyNZuuaHff8nu25333unNZN9kxYJyJg72aJm9LGZyZY8theU5SwQMARzQVQPuSBHgKQsLQwChgFXwfDK3GQS8J5VADdcmVWG4ZUgIBOwNv6AVDlcGLYpiJUaLijSRt7OGY4w03PnVr5exImqqOjIr8jIOCcifj/goCoj4pzzPucrHnT/600AABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABmFlAu5VdVhV7ZrleAH72O+2td93vQAAD01/BQAAAAAAAAAADM2jvgcwh8dXvH7R98AAAFaU/goAAAAAAAAAABiElQu4t9ZO+h4DAMA60V8BAAAAAAAAAABDsdX3AB5CVR1W1UFVPamqN1XVqupVVe3N+Nzbqvq2ql4k2e577AAAQ6S/AgAAAAAAAAAAlmHlZnC/pb0k+93fjzIKVh12r3+VJF3g6qB7/6J778Vdd3R+fr7drTsEX47/PD8/37/Xloavl1q/+OKL3/zss75Lh3urvgegVrXeR2v1+c9+NvPZf7azs3PW9/jWmP5Kf/Ugvvjii9/su3C4t9qc7+GkbU6tbXPOa0t9/rNz/RUAAAAAAAAwDCsXcK+q4yveet1aeznx83aSr1trF916SRew6mYaPUjyvLV2NLXtu4Z59pIc33Gdh/ZbAxzTWtT63XffRcCdVddaPu17DEusdS1/U8mm13p5mT+f2c/+oyTP+x7fKtJf3Yr+6oF89913fdcL99Yu9VfrqKVtTK2Xl6W/AgAAAAAAAAZj5QLuSU6veH16RrGTcfhqxvtPuj9fTq3zMncPYAEArDr9FQAAAAAAAAAAMAgrF3Bvrd125rCLmz4wFdC61ToznCZ53Pdx6RxlNOPm7yV51vdg1rHWzz///DeT/J2+i4f7qMrPN2UW96pcbsoso5tU69ZW/nmSvzHjrbO7bosR/dW19FcP7PPPP//N/05/xYqrrfy8RX+1bip12bIZtW5tNf0VAAAAAAAAMBgrF3Afmp2dnYskJ32PI0nOz8+/7f767c7OziDGpFYYpNb3ANSq1vuoat959q83/dXm1frf9V083FfbnO/hpDan1tqc81rRXwEAAAAAAADDsREzkc1wmiRVtT/1+v4c2wIAQH8FAAAAAAAAAAAswMrN4D4jNDXptLV2cdM2Wmuvq+osyWFVfdNaO+u2e9B3fQAAy6a/AgAAAAAAAAAAhmLlAu5Jjq9573GS2/5K7W+6bb2tqvFrT5O86LtAAIAl018BAAAAAAAAAACDsDIB99ba8yTPb/nZxzNeO0lSEz+fVtVXSfa6l85aa2dJXvZdKwDAMuivAAAAAAAAAACAoVmZgPtDaK1d5PYzkgIAcAP9FQAAAAAAAAAAcB9bfQ8AAAAAAAAAAAAAAAASAXcAAAAAAAAAAAAAAAZCwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYhEd9DwBWzEXy536/6s8tbYettX/58rL9cGur/qSq/r/LK/XTX0p+/pOqncvl7TOVtO4f3tS75e32B5X8ojaj1iT55NOqf2eZ++yx1kdby621VT7847HLpJpaH8Kf7SxvX8ASXHzx7/57v//Fv/vvLW2Hrbb+5Zb8sJI/qXa5tP7q0a9s/1J++MlP6ke/ttyeo3Xfw7XE7+Gtz6sqtVU/WWqtrau1lllrkvygfVq//O8vt7/q47wmST7bqvrtzeg5tmqrtv/ny621dbXWkmttf6q/AgAAAAAAAAZDwB3u5jT50a8tc4c/+9n5cZL9JP/XnZ2dx0vc9X7yT49be/vJMuudsMT9/mqqfpDWzjag1qTqN/60tX/02WbUuveutdO+zutSf0vKZtX66+fJL/dUKvAATj/9ta+W2l+dn/fYX/3iHx+3n/+/17/nePSvpn7wRW/9VWtL7jnav/qn7Rf/z83orz79H79r7c2G9Bx779qf/d82o9ZH/9Z5T3UCAAAAAAAAfM9S/4cpAAAAAAAAAAAAAABcRcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQVi5gHtVHVZVu2Y57nuMAACrRH8FAAAAAAAAAAAMxaO+B3APj694/aLvgQEArCj9FQAAAAAAAAAA0KuVDbi31k76HgMAwDrRXwEAAAAAAAAAAH3b6nsAD6Wq9qvquKr2Jl7brqpXVXUw8dpBVb2pqtZ9/knfYwcAGCL9FQAAAAAAAAAA8NBWdgb3m7TWTqrqWZIXSb7uXn6WZC/J0ySpqsPutaMkL5PsJ3lVVY9vO4Pp+fn5drfNIfhy/Of5+fl+34NR62rX+sUXX/zmZ5/1XToPpPoegFrVeh+t1ec/+9nM5+HZzs7OWd/jW2f6Kz3HGumvv/qk79J5EFUb8z2cDeo50trG1NpSn//sXH8FAAAAAAAADMPKBtyr6viKt1631l52f3+a5E0XtDrJKGz1uLV2UVXb3c9HrbXn3edfVtWbJAfd529jL8nxLT+7LL81wDGpdcVq/e677yLgvp5ay6d9j2GJta7tbyrZ5FovL/PnM/t5eJTk+R03xwT91bX0HOtp+f3Vj/sumYfQLtsG9VdtY3qOtsa/9W7a5Tv9FQAAAAAAADAcKxtwT3J6xevvZxZrrZ1V1VGSwyRPMgpbjYNVT7o/j6bW/ybJdt/FAQD0QH8FAAAAAAAAAAD0amUD7hOzgt70uaOqepJkb2qd3e79i6nP3/VXb58medz38egcZTQL5e9lNHvqOlPrA/v8889/M8nf6bt4Fq8qP9+UWdyrcrkpM5tvUq1bW/nnSf7GjLfu+h3OFP3VTHqO9aS/YqFqq37e3m1Kf1Ub03NUcrkps7hvfaK/AgAAAAAAAIZjZQPutzUOXyW5qKrD2wa3bmtnZ+ciycm9N7QA5+fn33Z//XZnZ2cQY1KrWhmk1vcA1KrW+6hq33ke9kt/tZ7UuiS/6Lt6HkRrG/M9nA3qOVK1MbVW9FcAAAAAAADAcKz1TGRVtZ3kRUYzNB4leVZVe93bJ91n9qfWeVFVb/oeOwDAEOmvAAAAAAAAAACAh7SyM7hPB6emnLbWLjIKX52NZxXt1nmR5OvW2klVnSU5rKrHrbWLLpz1JMnLvusDAFg2/RUAAAAAAAAAANC3lQ24Jzm+5r3HVbWbUZjq64nXnyZ5U1WHXSjrmySvknxbVePPnGQ0GykAwKbRXwEAAAAAAAAAAL1auYB7F5x6fsuPv5xa9yzJlxM/nyb5amK20ovuNQCAjaG/AgAAAAAAAAAAhmLlAu4PobV20vcYAADWif4KAAAAAAAAAACYx1bfAwAAAAAAAAAAAAAAgETAHQAAAAAAAAAAAACAgRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAbhUd8DAIbsL/xx1Zd/srz9tR9dXuaHSbK1VT9b3n4//1HSPq/avlzePqtaa1ujv+Xd8vabJD/8tGpvifvss9Yfby231lRrGdd6maSp9UHsLHFfAIv16L//x/XJzvL6q5YfXba2/P6qfvSjJEvurzLRc9Rye4767NP69H+05O/hnmrNj7eqvu6r1uX3V8s8r61V6yYiqOQyVforAAAAAAAAYCMJuANXOUk+/XHy6dJ2eH5+fpjkWZLs7OwsM2Cxn/yT49befrLEfb7XWpa636p/409b+0efbUate+9aO+3rvC71t6RsVq2/fp580UepAPd1knz249TyvobPf6a/WoZRf/VfbUh/9Vsb1HN8/a61f9hPrcnWMqP8o/7qX+qjVAAAAAAAAIDvWer/HAYAAAAAAAAAAAAAgKsIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIaxFwr6r9qmpVtX+HdY6r6rDvsQMADJH+CgAAAAAAAAAA6MNaBNwBAAAAAAAAAAAAAFh9Au4AAAAAAAAAAAAAAAzCWgbcq+qwqg6q6klVvamqVlWvqmpvxmef3fQZAIBNp78CAAAAAAAAAACW4VHfA3gge0n2u78fJdlOcti9/tXE554kObvhM9c6Pz/f7tYZgi/Hf56fn+/fa0vDp9Y1VFW/2lpLkiyz1i+++OI3P/us7+qXqvoegFrVeh+t1ec/+9nMZ8TZzs7OWd/jW2P6qzX/HlbretJfLUttzPdwNqjnSNrG1Npa9FcAAAAAAADAYKxrwD0ZBaq+bq1dJEmN8gYvZnzum1t85jp7SY77LnbKbw1wTGpV643G4avO0mr97rvvskkBrNbap32PYXm1rudvKtn0Wi8v8+cz+xlxlOR53+Nbc/qrzaDWNaK/Wg791XrapFr1VwAAAAAAAMCQrPP/rD0ZB6s6s2Yce32LzwAAMKK/AgAAAAAAAAAAHtQ6z+B+cf9N3Mppksd9F9s5ymgWyt9L8qzvwahVrXdVVf9ha+2vdT8u7b76/PPPfzPJ3+m7/mWpqp+3lo2YZbQql5sy8+Ym1bq1lX+e5G/MeEuQ+uHpr9abWteQ/mo59FfraZNq1V8BAAAAAAAAQ7LOAfel2NnZuUhy0vc4kuT8/Pzb7q/f7uzsDGJMalXrHWvdH/993WvtWet7AGpV631Ute88I9ab/kqtal1orfqrpWgb8z2cDeo5ktqYWquivwIAAAAAAAAGYyNmIgMAAAAAAAAAAAAAYPgE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABuFR3wNYhNbaSZKa+PnxIj4DALCp9FcAAAAAAAAAAEAfzOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCI/6HgDAMPyFP6768k+Wt7/2o8vL/DBJtrbqZ0sttX32ZeW33i1xj9Va20qSqlrmfpP8eKtqb8m1pqs1l0maWh/EzhL3BcDcNqi/yudfLv97uK/+6kcb1HMsu9Y2VWstsdamvwIAAAAAAAAGQ8AdIDlJPv1x8unSdnh+fn6Y5FmS7OzsLDVM8of/5//jf/PP/nf/258uc58TPlnmzn7j9/6Ldy2/t9R9jo3DSctStfeutdMNqfXXz5Mv+igVgNvbqP4q7Z/+N+3d/+unS93neNdL7q/q0f/wXWtvNqTn+Ppd+8X/o59al/wb9+qTf+M8pb8CAAAAAAAAhmGp/8MUAAAAAAAAAAAAAACuIuAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIKxswL2qjquqVdXhNZ95Nf2Zm9YBANhU+isAAAAAAAAAAKBvKxtwn/Bk1otVtX3FeydJzvoeNADAgOmvAAAAAAAAAACAXjzqewD3dJZkt6r2W2snU+89SXKR5HTyxdba474HDQAwYPorAAAAAAAAAACgN6s+g/tZRgGrWTOJ7id5Pf1iVR1X1cHEzwdV9aaqWvfekwAAbC79FQAAAAAAAAAA0JtVD7gnyctMBbCqart77WTG5/eT7HafO0zyovvc04xmJH1VVft9FwUA0CP9FQAAAAAAAAAA0ItHfQ9gAV4neVFVT1pr4xlFnyS5aK29npxNdFIX0nqW5Ki19rx7+WVVvUlykNnhre85Pz/fT3Lc90GYsn9+ft76HoRa1Xofan04jz7/rO+Sl6a19kmq71Esq9Z80vcYluXdu/rpxcXM++ZoZ2fn+Z03yCz6q+/bpO9hta4ptT6c7V9Zj389fhuttY3pOTap1nfv6qcXf6C/AgAAAAAAAIZh5QPurbWLqnqd0cyh4wDW5N+vMp6V9Gjq9W+SbPddFwBAX/RXAAAAAAAAAABAX1Y+4N45SXKY5Gk3c+iTjIJU19lNRgGuyRdba2d33PdZvh/i6svvJPlpkt9P8g/6Hoxa1XpXVfWXWmu/3f04lPtq/Wr9xbv/JMkv930MlqGqLtuGTKhaVZetbUqt7Q+T/N0Zb91qdnBuTX81sjHfw2pdT/qrZe07/0naBvVXG9NzbFIvGf0VAAAAAAAAMBjrEnB/neRFVT3JaHbQi9baTTOMLsTOzs5ZkkH8uu7z8/O9jII6/3jdf4W4WtfT+fn5YZLfThK1Ppw//MUvficbEnBP0voewBJL3Zhat7Zyse7PiIHQX2XjvofVuob0V0vS/unvtHf6qzW0MbVubTX9FQAAAAAAADAYazETWTdL6Osk+91ym/DVSZJU1f7ki1X1oqre9F0TAECf9FcAAAAAAAAAAEAf1iLg3jlJ8qRbbvwV2q21kyRnSQ6rajtJqmrvtusDAGwA/RUAAAAAAAAAALBU6xRwf51kO8lFa+02M4wmyTfdOt9WVUvyJslpkqO+iwEAGAD9FQAAAAAAAAAAsFSP+h7AvFprj6d+vkhSt/hcTfz9NMlXVbXfvXTRvQYAsHH0VwAAAAAAAAAAQN9WNuC+SK21k77HAACwTvRXAAAAAAAAAADAPLb6HgAAAAAAAAAAAAAAACQC7gAAAAAAAAAAAAAADISAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIj/oeAADL9Uv/k/1f+em/9us/W9oOq37Ukh8mSbW2vP0mSf3Sl5W9d8vcY2ujfzxWlcskbXm7/vFW1abUmp0l7gsAblb/vV+pR18sr89p7UeXbdRfbW3Vcvur/PjLqq+X3HO0rueo5fdXj357ibW2qf6qllhr018BAAAAAAAAgyHgDrBhPvmVX9n+5Fd+ZWn7Oz8/P0zyLEl2dnaWHJz5o/PW/sufLHefI+Nw0rJU/dvvWjv9ZDNq/fXz5Is+SgWAK/xgO/nB0vZ2/jP91TKM+qs3G9Jf/cZ58i/1USoAAAAAAADA9yz1f5gCAAAAAAAAAAAAAMBVBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEB71PYCbVNV+99eL1trpA27/rLV21ne9AAAPTX8FAAAAAAAAAAAM1WBncK+qw6r6Nslxt7ypqm+r6vCKz7YrlhdVtT31+e3xOhPbf1tVb6tqr+/aAQAegv4KAAAAAAAAAAAYukHO4F5Vb5LsJXmZ5HVr7aSbCfRJkmdVtd1aezpj1cdTP+8neZZkd+q9V917R0leJzmb+OxxVX1ttlEAYJ3orwAAAAAAAAAAgFUwuIB7N4PoXpKnrbWX49dbaydJTqrqLMlhVZ1Ovj/xmUkn3eyiB1W121o7q6qDjMJWT6fWf11VJ0neZhTEmhXwAgBYOforAAAAAAAAAABgVWz1PYAZDpKcTIerxlprR0lOMwpJ3cZF9+fuxPZPZ22/tXaR0aym230fBACABdJfAQAAAAAAAAAAK2FQAfeq2s8o/PT6ho+eJNmtqt2bt/o+eHXW/bnXrT9Ta+15a+2bvo8FAMAi6K8AAAAAAAAAAIBV8qjvAVzh7Ib3TzKaYXR38rNVdTj1ub0k+0mOWmtnXcArGc1QuhDn5+f7SY77PmBT9s/Pz1vfg1CrWu9Dretp2bV++eWnqeq76uVoLZ/0PYZlefeufnpxMfNaOtrZ2Xne9/gGTH91P5v0PazWNaXW9aS/ejittQ3qr6K/AgAAAAAAAAZjqAH3eT2b+vk0o/DV9P+Mveh7oAAAK0J/BQAAAAAAAAAALM1QA+7bN7y/1/35UZCqtXbTPHLjmUX3M5ql9Hu6WUj3k7xsrd0002kymuH0qNej9cHvJPlpkt9P8g/6Hoxa1XpXVfWXWmu/3f04lPtKrStc69ZW/lZr+WHfx2AZquqytWz1PY7l1Nr+MMnfnfHWyV23tWH0V/PZmO9hta4nPcd60l8tx2b1V9FfAQAAAAAAAINRrQ3rN7dX1bdJXrfWnl7zmeMku621r7qfD5M8u0UAK1X1NslZa+3xFe/feltDc35+fpwuXLazs/P4vtsbMrWup/Pz88N0MwXv7Oys3D2o1iHW+kfnrf2XP+n7GCxD1b/9rrXTT/oex3Jq/fXfT/7Cr/U9jlWiv5rfhn0Pq3UN6TnWk/5qOUb91ZsN6a9+4/f1VwAAAAAAAMBQDHEmspdJDrqZPr+nqg4yCqO8nnP7r5Psz9p+VW0nOYgZygCA9aK/AgAAAAAAAAAAVsIQA+5HSU6TvKqqZ10oKlW1283++SLJaWvt+YK3v5fkOMl21vzX2QMAG0d/BQAAAAAAAAAArITBBdxbaxdJHmc0E+hhkm+rqiV5m9GvYD/q3r/v9k+ntv8myW6Sb1prZhgFANaG/goAAAAAAAAAAFgVj/oewCxdSOppVT1Psjfx1mn33vTnnye59Yyj4xBWVe1mFLoavy54BQCsJf0VAAAAAAAAAACwCgYZcB/rglIPFopqrZ0lOeu7TgCAZdFfAQAAAAAAAAAAQ7bV9wAAAAAAAAAAAAAAACARcAcAAAAAAAAAAAAAYCAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQXjU9wBYT7/3X5+3/83f+y+ytVX5ZKuy9X7ZytYnGf350Xuj1z75ZPSZqur+PvGZ7uetqmx9Ml4/+1tb/6y93/bWh/Xeb7P7c6u616rySXXvVbK1VaP9ddt+//mMx5n86vaPslXJf/svvvtova2J9bamtvl+7O/fq1SSrbpMpaXqMsmHv3/4s/t7LpNq2fql0ee26nL/4k//Ratqqbyb2EbLVkZ/jtdPWrbq/Xrdz63b32UqP07Vn0u7/K+T1pK05PJydPIuLyd+bqP32/Rrl93r4/euWe/9n+n+vPxof+2y+8zlZb58d5lctuTdZS7/WWu57H6+vEzejf+cfO2y+zOpr/+jXP7f/+7o5+61jz4/ud77z7SP3muXl8kvWi6799rlZdq7lvZu9Fp7dzl67RdJLlsu312mXXaff7/eh3XG77VfjNbLu4xeezfa1mX32h9eXrbROpfv19v5X/wv85P/4D9+muRl3/czAMOgv9Jf6a/0VwAAAAAAAACwCQTceRC/9Rd3+h7CQv3oB5+kqu9RLNKjJF/0PYiFqp/8xb6HsFCf/+v/ZpLs9j0OAIZDfzV0+quh018BAAAAAAAAwGrY6nsAAAAAAAAAAAAAAACQCLgDAAAAAAAAAAAAADAQj/oeAAA8nM9+WPVV34NYVq1bVbt9D2JJfvBl3yMAgM21af3VptSqvwIAAAAAAACGQ8AdgDX26Y+TX13a3s7Pz/eTHHc/Pt7Z2TlZXq1/dN7aP/7J8vbXn6rf+LbvMQDA5tqk/upfnLc/+/9sRn/1yb/1rd/xBwAAAAAAAAyF/33Jg/gH//nbvoewUD/745/nZ3/8Z30PY4G+S2v/v74HsVDt7P/S9xAW6o+O/7MkWWJ4B4Ch018Nnf5q6PRXAAAAAAAAALAaBNx5EH/vP/1HfQ9hoX72xz/Pt3/8876HsUB/kuS/7XsQC9X+q/+07yEs1B/8n14lAlgATNBfDZ3+auj0VwAAAAAAAACwGgTcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGAQBdwAAAAAAAAAAAAAABkHAHQAAAAAAAAAAAACAQRBwBwAAAAAAAAAAAABgEATcAQAAAAAAAAAAAAAYBAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBEHAHAAAAAAAAAAAAAGAQBNx5EIf/8f+g7yEs1L/yyz/Mv/LLn/c9jAX6IlVf9T2Ihap/56DvISzUn/tb/6skWa+iALgX/dXQ6a+GTn8FAAAAAAAAAKvhUd8DYD391l/c6XsIC/WjH3ySqr5HsUiPknzR9yAWqn7yF/sewkJ9/q//m0my2/c4ABgO/dXQ6a+GTn8FAAAAAAAAAKvBDO4AAAAAAAAAAAAAAAzCWs/gXlX73V8vWmunfY8HAGDV6a8AAAAAAAAAAICHtJYzuFfVYVV9m+S4W95U1bdVdTjjs23y9emfAQDQXwEAAAAAAAAAAMuxdgH3qnqT5FmS10ket9YqyePu52dV9eKGTZwkOeu7DgCAodBfAQAAAAAAAAAAy/Ko7wEsUjcz6F6Sp621l+PXW2snSU6q6izJYVWdTr4/qbX2uO861sTRf3b4P3v+UBs/Pz8/TrKf5GRnZ2cZ52w/SX66/aOTJexrZq3vFlvrbpL92vqffrgPPll2ZSP1ca2HGQUos7OzU3fc1OEn//7//sGuuUW7Ra0HEQYFBkB/NSj6qwXXqr+6kf4KAAAAAAAAAFi6dZvB/SDJyTXhqqMkp+lCD7NU1XFVHfRdyBpYmSDMLZ10y7o4S/Ly3lsZlnW75l5mva45YHXpr4Zj3b7r9FfDt27XnP4KAAAAAAAAAFbA2gTcq2o/yXaS1zd89CTJblXtXvH+fkazLwIAbDT9FQAAAAAAAAAAsGyP+h7AA7jpV86fZDTD6O4tPnuj8/Pz/STHfRc9Zf/8/Lz1PQi1qvU+1LqeNqnWJMfn5+dL29mXX36aqr5LXo537+qnFxczr6WjnZ2ddZtteCj0V5v1PazWNaXW9bRJtWbp/dUPsiHtVd5d5qcX3+qvAAAAAAAAgGFYmxncAQAAAAAAAAAAAABYbes4g/v2De/vdX9eLGh/Z0mO+i668ztJfprk95P8g74Ho1a13lVV/aXW2m93Pw7lvlKrWu9S66+21v5a9/f/Q2vtnyxr31tb+Vut5Yd9H4NlqMofJvm7M9466Xtsa0x/tQHfw2pdTxv2PazWNdRrf1X5Wy36q77HBgAAAAAAAGyetQm4t9ZOquoiyX6S19d8dD/JWWvtdBH73dnZOUsyiF/XfX5+vpdRUOcfr/uvEFfrejo/Pz9M8ttJotb1sWG17if5a0nSWvt7Ozs7SwwE/dF/lA0JYG1ttYt1v5aGQn+1cd/Dal1DG/Y9rNY11G9/9S82p7+q6K8AAAAAAACAwdjqewAL9jLJQVXtz3qzqg5yc0ALAIAP9FcAAAAAAAAAAMDSrFvA/SjJaZJXVfWsqraTpKp2q+owyYskp601s5IBANyO/goAAAAAAAAAAFiatQq4t9YukjzOaAbRwyTfVlVL8jbJs4wCWo/7HicAwKrQXwEAAAAAAAAAAMv0qO8BLFoXwnpaVc+T7E28ddq9N/35uu5n7qaqDpKctdZO7rjeXpIn3Y9nrbWXPdcx93iqav+q9+56XJY99kWsP6Sa+j4XN/n7f//v51d/9VfzV//qX33wYwFwH/qrfumv+v9O1199tJ7+CgAAAAAAAAB4UGsXcB/rwla9Byw20GGSl7nDsa+qw4xmgJ187SDJ41mhuYe2gPEcX7f5IY99aOdiAWPq7Vzcxt/+2387f/Nv/s1bB7CGeH6AzaK/6o3+Sn81pJr0VwAAAAAAAADAg9rqewCsh6raq6pXSbbvuN5+RoGS10m+7GZ4Hc8O++wu21pQHfcaz8SMlkdJHs9Yhj72wZyL+46pz3Nxi7r2/vJf/st/5Q/+4A+WciwAWE36q4/WT/RXvdekvwIAAAAAAAAAlmFtZ3Bneaqq3WP1g+7Pp+MZEltrR13Y5CCjgMkyLWo8J621Zc9we9+xD+1cLGpMfZyLK43vl9/7vd/r41gAsCL0VzPpr4ZRU6K/AgAAAAAAAAAekBncWYTxjI3zBED2MwrIXEy9fpJke2KWyGW573jG758uedyLGvuQzsV9x9TnubjO4ySP//pf/+v/+RKPBQCrR3/18fqJ/moINemvAAAAAAAAAIAHJ+DOvbXWxjM4zhN02b5ivfFre0suZ1HjeVJVr6rquKpeLCkcc9+xD+1cLGpMfZyLK43vl729vX/ew7EAYEXor2bSXw2jpkR/BQAAAAAAAAA8IAF3enPLIMz2io1nHIJ5MfHZJ0mOq+pgqGMf2rlY0Jh6ORcDPRYAbIihfWfor+5d+6Bqiv4KAAAAAAAAAFgCAXdYrN0kZ0m+bq09bq09TvJVRrNAvqiq3b4HuEGcCwBYD77Th8O5AAAAAAAAAAAenIA7LFBr7atuOZ147SLJUffjSs1sucqcCwBYD77Th8O5AAAAAAAAAACWQcCdj1TVflW1Wyz7991Xa+2k++v2NR87W1Y9Dzye8bYfZFbL+459Gedi2TVd40HPxYodCwCWQH/1YOPRXy25pmvorwAAAAAAAACAhXnU9wAYnNMkj2/5uUU4y+wgzP7E+8usZ+7xVNV2kr0kp91MllfV+1Dueywf+lwsraYBnIvBHAsABkF/pb+ad/3B1DSAczGYYwEAAAAAAAAAPCwBdz7ShVVO7r2h2ztJclBVu621yQDJfpKLiZkVl1XPfcazm+Q4ycskT6fee9L9uajg2qLHvoj1h1RT3+diSMcCgJ7pr/RXA/v+1l/d/1gAAAAAAAAAAA9oq+8BsBmqar+qWlUdTr111P35qpsVMlX1LKPZIV/2MNRbj2e6ptbaaT6EZJ5V1Xa3HCQ5zGi2y9dDHPtd11+iW41pgOfiXlbo/ADQI/2V/uohaxrgubiXFTo/AAAAAAAAALDxzOBOr1prZ1X1NKNQzLdVNX7rZWvt+QqO55skr7r1J8MzJ917gx370M7FAsbU27kY4LEAYIMM7TtDfzWcc7GAMemvAAAAAAAAAIAHJ+DOwrTWTpLUHO+9rKrXSZ4k2U5y0s0Q2VcdtxrPrJpaaxdJHlfVXpL97uWl1XOfsd9l/WW6zZiGeC5u8ru/+7v/5Hd/93evqnllzg8AD0t/1f93uv7qo9f0VwAAAAAAAADAgxNwZxC6sMzLvsexqPF0oZhegjELGPugzsV9x9TnuRjasQBgswztO0N/NZxzcd8x6a8AAAAAAAAAgIe01fcAAAAAAAAAAAAAAAAgEXAHAAAAAAAAAAAAAGAgBNwBAAAAAAAAAAAAABgEAXcAAAAAAAAAAAAAAAZBwB0AAAAAAAAAAAAAgEEQcAcAAAAAAAAAAAAAYBAE3AEAAAAAAAAAAAAAGIRHfQ8AAFiEz35Y9VXfg1iSH+hfAIAl+PyH9cm/1vcglqP0VwAAAAAAAMBw+B+YALAWPv0rya8ubW9/+qd/+pvffffd30mSzz///H/92Wef/cMlFnuxxH0BABvr07+SrV9b2t70VwAAAAAAAAAjAu4AsB5OlrmzP/qjP3r/9z/7sz/7h5999tlS9w8AsAT6KwAAAAAAAIAebPU9AAAAAAAAAAAAAAAASATcAQAAAAAAAAAAAAAYCAF3AAAAAAAAAAAAAAAGQcAdAAAAAAAAAAAAAIBBqNZa32MAAAAAAAAAAAAAAAAzuAMAAAAAAAAAAAAAMAwC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4wcFW12/cYAGbxfAJWlecXMFSeTwAAAAAAAAAC7jBoVXWY5E1V7fU9FoBJnk/AqvL8AobK8wkAAAAAAABgRMCdlVRVe1V10Pc4luAoyVmSYyEHGLaqOqiq4255VlXbfY/pgR0leZ3RMwpYA/orYGj0VwAAAAAAAACbScCdVbWX5EUXcnhTVU/6HtBDaK1dJHmcDQphVdV2d14Pq2q/7/GwGOt8Xrva3iR50b20neQwybO+x/ZA9e4mo+dTa+1p99pGPJ9gA+iv1tQ6fw9vsnU+r/or/RUAAAAAAACw2QTcV9iGzLA5U2vtZZLnGYUckuSk7zE9sKPuz7UOOXS1vc0ouPKkq3dtwjrj4MpkvVX1tqpaF2BZyxkp1/28Jjnu/vy6tfa4tfZ19/fnfQ9s0arqMMmbGc+h7az584nNob/SX62bdf8e1l+t53mN/irRXwEAAAAAAAAbTMB9RXXhqxdV9eLeG1td+xnNvLmXUahj7UwEV150ta57yOFVktettS9ba18l+aq1thbhuungShfGOk5ymlHAbi+jc7uOIax1Pq/PMjp337TWTsevT/59zRxlasbjTZwJmfWlv0qiv1pH6/w9rL9az/Oqv9JfAQAAAAAAABtOwH1FdTNsvkxysMEhrKddmONpRmG0tZpxtQviHOdDcOXrJF9lTUMO3YyTuxnNHJskaa2dTby/6ud3OrhykOSktfZNNxPlV93nVjqENWMW1XU/r/sZ3aNnV32gqrar6sU6zKp6VdhKCIt1ob9Kor9aq+fXBnwP6686a3Ze9VfRXwEAAAAAAACbTcB9hbXWnuYOIaxVDnVM1lBVB1X1ZBx46MJo6xjCepLRjKJH4xe6mtc95PC963RiRt2VDbBMB1QyCiW9nvF+sqIhrOlZVKes5XnNh5mOb/Iko5mCV54QFutOf6W/WtPn11p+D+uv1vO8Rn+lvwIAAAAAAAA2noD7irttCKsLOrydnv1vlXT/M/9tRiGGV13YY3wcvhfCWvFQR/IhsHIx+WIXcvime3+lQw5doG58nk67P78XouvObzIKu6ysqYDKkyR7V7yfrGYI6yijUNlkIGndz+vJTePvzutRkt1Vul+7+/Owqt5WVeuWN1V1IITFutNfvT8O+qsVpL/SX3V/XeXzqr/SXwEAAAAAAAAbTsB9DdwUwhrP4pcbfs37kHXBseOMwh1fJnncWns+dRwmQ1jjoNYqG88++Wz6jYnzOA7yrKoX6cIrEyGVZ9MzxU4EkVby+p00EVA5zeievS6E9eyOm+/FOETXWrvonkepquOq2tuA83qSZO8WQaNxEG0lQnXduTnO6Bo8yegcjmc7flFVb7q/3xTCWuXnExtOf/X+OOivVo/+Sn+VrPZ51V/prwAAAAAAAIANV621vsfAgnThq4MkLydCEOPw1fvXVlE3m+iT1tpXE6/tZ/Q/93e7+l5P1Lyf5PmqBs4manzV1fK4tXY68fp2km+TfD35+qrpzutea+3xxGtvMpp58yijYOF2PoTpHnfhjpU3EXDZzdT5XSUTz52n4xlDZ9W2Due1Cxg9yShY9Lq1dtHV+rZ77co6Jp7FX63Cc2kiYPV0+tqsqmcZBbPOMjEjblb8Woar6K/0V6tGf7X630n6K/1V9/LKX8sAAAAAAAAA8xJwXwHdryt/ecvPvg9hZTSj3YskR9Ozca6arq691trXXeBhMgCQjP7H/0oEG66pcS/Jq66W03w/2PAyU8GV1trXfY/7njU/SfKitfbl1OuH+Xh2zdPMCIKsglnndRzSWYcQVjeb7273400hrJU9r9eNvbuOX2Xq/E6su53kTZKzybDhUE2Exa4MeHYB2OOMgmjfrMO1zObRX+mvor9ame/hGTXqr/RX+isAAAAAAACANSbgPnDzzBA6EcJKJgIRQ1dV29fMzjf+n/1nGf0P/ouMZhB9OTHb5soGzapqN6OAxklX40E+nr1vHDgbW4ngSlXtt9ZOJn4eh+fOuhouMpqd8csrQit7SS6GXuc19V95XtclhNU9ow67Gp/k5hDWyp3XiWfq8ySvuzoPk5yOQ5ATz+qLjGZRfd1aO+vCWc/yISS6CjOpvkqyfVNYbCKU9lVX6/h8n6zqs5jNob96/57+Sn+1cvRX+iv9FQAAAAAAAMD6E3BfAZOzht4xhHW6QuGryZlRj2bNFNoFGZ5kFNx5ORVg+TbJN621133XckOdHwWSJl4/TLLbWvtmoqbj7u3HrbWLLsyzmySztjE0E+f0/SyFXUjlSZL9qY+PZ8Q9XZVQzi2PwY3nder1lQyudLOMvs5o9tuD3BDC6nu8d6xtfB1/FGadCB89Ht+P3Wyyh/n+9X3Srb8SMyBX1Zvc4lrsnklvs8LhVzab/ur9Z/RX+quVor/SX3X0VwAAAAAAAABrTMB9RdwlhHXdTJ1DNPE/8S8yCnAk1wSxJmucDLSMZ/obqisCSdsZBTYuMgofvZ74/MywziqYqPXKUFwXVtnt6k/397GTjM7/4INmXS2HGc0oudbn9Zr6x7OMftX9uRYhrO46fpJuNuMZNb/IRABr4r29jEJY25m4LlZFVY2fqY9v8dm3XY0CWKwk/dXsGvVXw6S/Ws/zek39+quP39NfMyKATQAAHGFJREFUAQAAAAAAAGyQrb4HwMe6oML3dKGrl0kOulDAVesfJHnbhZpWQheyGocbvh7X2dXxYrqWcWCrmwXvbUYhh1vNvNqXqUDSdBhjL6OZCvemjstFknEA4viqa2NoJkIrX18342trbRxMep1RSKkyOv9PMwoarkr4ajejc3vcBW/G1uq8XqcLJ10keTbxrHrRPY8maz7L6NoYvKraz+i8nmV0jU47SHI26zrtru2j1trzVQtfdU6T7N/ye2RlvmvYbPor/dXEcVnJ72H91XtrdV6vo7/63vHQXwEAAAAAAABsEAH3AemCK9/OCh0lN4ewJma8e70qv6p9wuuMglR7XZ1f5eMg1nEXiBgHtp5nFPh4mYkZO4foukDSRDDlNKPzel1Y51nftdyh1u/NIllVe9P1dS7ShZS64MrL64JbQ9Ndj5OBqr11O6/J6Nxe9WzqHHW1bl8Vwmqtfb0qM1F2waqnGV2bHwXluut8N8k3fY/zgYwDsYfXfWj8TM7oOofB0l/pr1b9e1h/pb/SX60F/RUAAAAAAADAHVRrre8xkA+zZmYURhn/j/6XSY6mw1QTs1W+7IIOk+Gr96+tmu7Xtu+21r6aeO0wHwdUTrpjsiqzT14bSEpGoaMu3HGcUajj8ZADZfeo9Tij6/P51Hv73XtfdsGklTRRY8bHYB3Oa1fb+PkydtWz6W1GAdDn3c/jZ9XTbhbSlTNR+2lGobnDXHGdr5OJZ+/M75SJa/uitfb4rtuHZdFf6a+y4t/D+iv9lf5qfeivAAAAAAAAAG7PDO4D0QUZxgGFr/Px7Jofzeo3PdPoREDgaFXDV52jJLvjGQmr6llGAYDJGUf3M5rtb/CzMt4ykPQk+WjGybOuvr077q7vWvczul7PumX6veNMBHMmTYTpVqrmGXWMAzrJ92caXcnzOlHby3x4Pr3MKFD2tqpeTcwymUzMMtqtN35WrWTdE7WPZxp9mw0IX3V1P8+H75k3VXVQVdvdcpDkTUbXwSp/57AB9FdJ9Fcr+z2sv9JfdfRXa0J/BQAAAAAAAHB7ZnAfkImgytPW2ssudPUso2BLMjW75sTsfckKz+A3dQzGszGeZMbMhF2wY2/oM4xOnMvTjMIaF1PvvcookPR0ar2VnZFyeibG1trFxHG4dubbqtof+jm9w3FY55lG388YmlGo7FlGocj3z6bpWUZXQXd+nmUUrhqHXU8zum5fdp/53vXd97iXdGyeZDSr6u7UW68zej5vxHFgtemv9Fer/D2sv3pfi/5Kf7U29FcAAAAAAAAANxNwH5hxAKm19tXEa+NfZT42GXZ4keR0HcJXXa1PMgonJSseKps3kDQR1jlZpRDLjJpfZxTcmFlr99mDrGGY5YYQ1sqd16na3oewuqDofj4OYp1lFGT6ahXO68R52ctoRs3xmPe71ybv340MYXXHaXw8LjK6hs/uuUlYKv2V/mqVv4f1V+9r01/pr9aK/goAAAAAAADgagLuAzNjltFnGYVYnmYUbpiccfR5a+2o7zE/wDF4mySTIbRVtYmBpImac0OtL3LDzKOrbFYIq+8xLbC2j0JY3WuTQaxkRQKUVfVmYrynU+8962o6ixAWrDT9lf4qK/7M1l+9r1F/pb8CAAAAAAAAYAMIuA/QeJbRjAJXH4Ucuve3k+y11k76HusD1T8OOKxEgOMO9SQbEki6LqSybrXecBwmQ1hfr9OsjLNCWN3r+0m2W2uv+x7jLWoYX4tfXxWQmwjFvm6tfTO1nhAWrBD9lf6q7zEvsGb9lf5qsPRXAAAAAAAAACyCgPsAVdWTJK+6H9cihDTHMXib5KK19nXfY1lQPRsXSJpV88RrR621532PcUnHYS+jwOTa3cdXhbBWRVW9yigs9viGzx1mNNPoV+MQXXct727KdQzrQH+lv1oH+qv3x0F/NVD6KwAAAAAAAAAWQcB9oLoAUlprX/U9lp7qv3Hmv1WziYGkqZpfJzlc11o31SqHsKrqTZKTm67HqtpN8jauXVh5+iv91TrQX60//RUAAAAAAAAAm+5R3wPgSkdJXlTVwaqFGhahtfayqrIu4avJmjIKJB1X1doHkqZq3ssKhnS4XmvtaXeO9/oeyxwubjPu1tpZVZ31PVhgIfRX+quVp79af/orAAAAAAAAADadGdwHrJtl9KK19nXfY2FxJmbdTDYkkNTVnE2oldVRVYdJniX5qrV2dsNnW9Y4LAmbRH+1nvRXMAz6KwAAAAAAAAAWQcB9wCaCOl+v00ybCCTBEFTVbpK3SV631r655nP7SY6TfNNae933uIH70V+tL/0V9E9/BQAAAAAAAMAiCLgPXFUdCOkAPIyJWUZfttaeznh/O6Pw1UVr7XHf4wUWQ38F8HD0VwAAAAAAAADcl4A7AButql4kOUhymuRlkvEsok8yCmdtZzTT81nfYwUAWAX6KwAAAAAAAADuQ8AdgI1XVU+SHCbZnXrrdZKnrbWLvscIALBK9FcAAAAAAAAAzEvAHQA6VbWfZC/JRZITs4oCANyP/goAAAAAAACAuxJwBwAAAAAAAAAAAABgELb6HgAAAAAAAAAAAAAAACQC7gAAAAAAAAAAAAAADISAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAyCgDsAAAAAAAAAAAAAAIMg4A4AAAAAAAAAAAAAwCAIuAMAAAAAAAAAAAAAMAgC7gAAAAAAAAAAAAAADIKAOwAAAAAAAAAAAAAAgyDgDgAAAAAAAAAAAADAIAi4AwAAAAAAAAAAAAAwCALuAAAAAAAAAAAAAAAMgoA7AAAAAAAAAAAAAACDIOAOAAAAAAAAAAAAAMAgCLgDAAAAAAAAAAAAADAIAu4AAAAAAAAAAAAAAAzCo74HAAAAAACw6qpqP8l2kt0kp0nOWmtnfY8LAAAAAABg1ZjBHQAAAGBAquq4qtoNy3FVHfQ9VngIE/fA/hWv37S8raoXVbV9w/bvfY9V1Xa3r5bkOMmrJIfd399W1ZvpOq7YzmFVvZ167aB7/cb1ubuq2h+f677HsinW4Zhf9XwainU4xot2h++ONn3sumfwXdZtVXXYc71rcw0s4n6b9V3abXfljw8AAADAujODOwAAAMDq2U+yX1VPknzTWrtY1IYnglkvzT7NitpNcpDkSVU9bq2dzrGNG++xLkD/NqNZ25PRrO0nE2PYT7KX5LiqnrbWXs7aURe6e5bk6dRbT7ptZGK7g+OZAevJvc2amPVd+jSjf4R2cNV3MwAAAAD9M4M7AAAAwDAdtdZqeknydZJxGGc/oxmjF+lZt+z2fQDgCiez7o3u/vgyyfPuc9sZXctXue899qrbx0WSr1trX7fWnnfLN0m+mtjOi6q66p56luRshUN2nhkwHGdJjpK8XsC21u3ePrrqu2NqeTxeoXueX/v5jL53xv+Q6iKj49+nRV4Da6n7Bxuvkxxe9dteAAAAAOifgDsAAADACmmtnbbWnubDbM/7VXXQ97hgCFprF621o3wIGD6ZYxs33mNdIG48I+zTWbPEd2N5mg8zxn4vbN/N3r6fD0F4gLm11s66ULZnyvIcZvTbOpIF/1adebgGbu1lbv6HcAAAAAD06FHfAwAAAADg7lprL6tqL8lBt8wMMnVB3L18mGk6rbWT2+5nidscb283o9msb9xeFw7ezWi20otZIeNF6/a53Vp7PfX69DE5vU3Irat7PDvuWZ81zDueea+Hbkbz8XKrc34HJ+lCa1W1N89xveEe25v43E2z5J5mFGKfNQvyODj/8pr1Zh6X6eN+l+N33TUw8f7C7q15tnePe2rpz4UZY3jw+/q+z+HxNZAZx3bi3ty+7fjvcz0u4/jddZsP/Hy6br8LPS9Dt+jvox7G/ywfnuNH97zuH+yZfs06cz0r59nfdevNe7/dsnec+V3aWjupqrOM/iHc85v2BQAAAEAPWmsWi8VisVgsFovFYrFYLJaBLEmOk7Qkh7f47F732ZZkd+q97SQvJt6fXL5NcnDFfqeX/Xm3ect695O8vcv2Mpot9dsZ6xwn2bvi8y3J8TXjaKP/VPa9sY23u53kzRWfu2o8hxkFuWbt78kVdb+dPOZXjKdd9Zlr1rmphnnGM9f1cM16b7tr+nhWjROvH9+h7ln3xr3vsbuci4yCd/vT12b3+pX1dOekja+hyeOSUaDy29sc89teA3e9t275zLjTvXrPe+quz4X3x2WBz+9b3UfdeRiP9ckV18y3mX0f3Pm+m7oG9maM8dvumtpO8uqKY7h9xfm/9fV40zGf5zm0qHNy3+fTnGN7iPPyvWN81+vtpns7D/+dutDr4C7P/Dtud/L74dU9xrXQZ/ot7rO5n5U3fYfcdb1577fcoXfM1HfpjGOxkPvZYrFYLBaLxWKxWCwWi8Wy+MUM7gAAAAArqrV2WlXjH/fz8SzQr7rXkuR1RjN0JqOgz26SF1V10T7Monk6sZ3xzxfdMu82r9XNvHnc/XjWbXM8hr1Z26uqw3Qzc3djHM/IedCtd1xVj9viZ3odBxAvJo5VqupFPszeOj4mu90xedat83iq7oOMAl3TNYyP43FVfXPb47iAGuYdz7zXw3gck/sbH7PjfHzNzWs8rrPW2tm8G7nqHmujmV8v0oXzquppu2LG2W7/s8Ywea/NcprRjMDTx+NJRtfcRTeei6ljvt1aO7pimzOvgWSue+vaZ8a89+qc91Rfz4XJMdz6PmqtXVTV04zuoRdVdTJ1nl9kdG3NmhH6Ps/h3YyugbMkR1PrHXbHay8frqvtiWN4mOTpjG3e53qc6/g9xDmZWG0Zz6dlnJf37nq9dbNsJ9f3A/e16O+jpepmW5/sX57eY3MP8ky/Ytz3fVbeaX+3WO/O99scveNV36Xj98brLuW3NAAAAABwB30n7C0Wi8VisVgsFovFYrFYLB+W3HGm0Vmfz8ezis6ajXM8E+yrGe/NnJX6Ptu8ZuwvrhnH97aXj2fNnp6hc3J20OOp9+472+xNsxHfdLyeTI1zPHPqs2uOybf5/sy847DjYaZmJb+mrptqmGs8814PE+fiezMJd9v89ppjeqsZ3DMKxl03W/G977EZtYxnnH3R7X/7Ftt9lTvMHJuPZ1V+M+P6mJwF96rZ5m+aEfhO99ZVz4x73Kvz3FP33de9Z3C/x300voYmn3PPrjnH8953k8do+r3dfHwdT8/UPx7j2/tej1cd8/s8Fxd5Tu7zfJrzunmI83LldT3H9XbVvfhQ36kLvw6mrtUX3RhuWm78fp3Y5re55rdR9PFMv+Y+W8Rz+da/recW45zrfssde8dbPCdakjf3vZ8tFovFYrFYLBaLxWKxWCyLX7YCAAAAwLrZzmgmyqM2exbO1xOf63Obu1PrTnqe0Uy2kzNqPhl/vrU2OVt92mhmzm+6H/e7GT4X6fn0PvNhlunvzbLcHaPx5/em1tlOctJmz8j6PKMZSbcn6h1v86y19rxb5pmV/Koa5hnPvNfDeBtHbWoG3m47N870nGSvqo6vWFpGAbckedBZfltrzzO65sbnYrc7nq+SfFtVb6rq8JprcXLW2rv6pk3NRttaezoxloMr1pt1DSSLv7fm3d4891Sfz4XJcc9zHx11rz+pqidVtZsPsys/bd+fcXgRz+GPZpruniXjY/1yxnbH7+1es815r8f7Hr9Fb3MRz6d5PcR5mXbX6+0hLfL76LYOMgqV37Rce712s6CPZ7d/3hbzmyEW/UyfZRHPyrvs76b15r3f7to7Xqmr+yIff6cAAAAAMBAC7gAAAABrprV20lp73AVwZ7lzkOchtjnhWVV9FMicCHNPBqLeh7OuGONZPoSF5wm/XVf/taHgK1Y7SvJ46v3969bpwlbzBBfnrWGu8cxzPXSBufE2rgrI3SY4t52rZ94dG4fWHlRr7XVr7askX2cUrJsM1e1lFB59U1UvZqy+O3GM7+L1Nf/AYXweZ96P1wQTF31vzbu9ee6p3p4LE+a9jy7yIdj8olu2c0WAfQHP4dMbrrd57pm5r8f7Hr9FbnOBz6d5PMR5uarmW19vD2mR30d3MP5HAzctV/4Dsqp6kg//KODlnGHvaQ/xTJ/l3s/KeeudXm9B99tte8ebnHZj2r/DOgAAAAAswaO+BwAAAADAvVw7Y3o3Q+tuRuGo7e7Pe4V4FrjNl916exnNeP06o6DR6fTszVO1XhfEO8niZ+L83lgmZze9KhjYhcWmQ2vj47TXzQI7yzj0tcg6rprN9N7jucP1MD5/Z1eF+VprF1V1ekPtpxmFyWcZz+z7JMlxVX0152z3s8Z9pe4aeD/jbBeU28+HGYkPqmo8I+/k9TNPqPS6ek4yCl/uX/HeTTUu6t668/bucU/19VyYNPd91Fo7qaqjfDhvJ9cE2N+b8zn8EP/oY97rcSHHb4HbHN8f930+zWNpM6fPe70t2IN9H93g9X1q7e658T9WOh0/zxfgIZ7ps9z3WXnX/V233n36gbv2jgAAAACsKAF3AAAAgNU2MyjbBWwP8/1g0HgG1DsH0he9zdba66p6nA/hrXEwOVV1kVGI6Wh6ZttbBpYfMsya3CL0fIODBx7fg4/nHtfDTefvprDnxQ0httdV9aYb10GuDsPf1p3D6N34xkHSw24cB1V11F2/4+tnacHWW457offWHbd3r3tqIM+Fee/r1/kwK/S1Ac2HeLYPyEM8F++6zfs+n1bBra+3ngzt+zHdTOGvMnpOXST5pu8xzWsgz8qxO99v8/aOAAAAAKweAXcAAACAFVVVTyZ+PJ16/VX340m3nKabKXNidum77muh20w+CgLv5sOMnPsZzdI6Di99PTWW7VsEl+47a/dDe56bA9PLDGfdaTz3vB528/DGs9DeK6R3zT02Dhi/bK29vmr9bgba5/kQ2NzPKHw3SIu+t5Z5rw7kuTDvfT05W/Wzqno9K4T6UM/hAXmI5+Jttzn+BxbLeD717VbXW4+G9v2YfPyPSp4O7HjdyUCelWNz3W/z9I4AAAAArB4BdwAAAIDVNQ7NnkyFrcavv2ytPV3wvha5zfe68b8P/k4EOfeqan9qxu69XD3r7DiAduvwWxcKvavJsPPuFWHU3e64nbXWXk6st5fk9IZZyJdl3vHMcz2Mz8nuDQG7IQV0r7rHxmG604xmQ75SF3If/7jdvXbSvTZPrdfNdH7n2eZnrL+we+uO25v3nnqosd/F3Pd1VY3DmOOw+rMkL5I8nvHxB30Oz2kR1+NDPBfvtM2qGo91lZ5Pd3bH623efcx7jIb2/Tiu5yAf7r2j6/5R05we8pl+1Tb7elaOLaQfuGPvCAAAAMCK2ep7AAAAAADcXRe4Ggd/poOe49evCmHNM6v1QrdZVbtV1brle+GuLkB2MrXt8b6fXLHN7Ylx3iXUNM/M8xf5MMPpkys+dpAPM4mOnd6wTqrqTXdcDvLw5h3Pna+H1tppPoTarjqHy6j5Vm64x8bX15NZ1+/UdnZnrJfMHyC8bp/j8d41DLnoe+vO27vHPfVQz4W7mOs+6kLVhxldC0+THHXHYL8LIk97iGf7fS3ienyI5+Kdtrlqz6d5zHG9zes+AfdkON+P42P2ovvxpLX2/AF28xDP9FmG8KxMMn8/MGfveJPxd/Qi/xEBAAAAAAsg4A4AAACwQqrqSVW9yofA1csZs4mOQ6K7M9bfyyggelcL3WY36+Y43DQrxLSdD+Gkk6k/DyZm2500PiZnU7N2jkNLe9OBqIkZoecxDj0/mx5Pt5/3s39PvDU+VwdXhLeedXVfZCrE2gW7Drvle+dhTvOOZ97rYXzMDq84ZosMWSbXz4w70y3vsZfdMdlNcnxVOLF7/VX340kX6hs76T5z1zDodkYh1el9TQa/7zrD8Lz31qK3N889teixz2Pe+2g8tqPW2lkX8h8HaJ/NuM8f4tl+X4u4Hu/zXDzonokHC9jmsp9Py3bX6+0qD/Wd+hDXwdymnt9nSb6Zczs3je0hnumzPMiz8h7H/s7325y94012u5ofetZ6AAAAAO7oUd8DAAAAAGCmZ7eYUfVla+3pjNdfZxQMGgehxyGf/XwcCNrtwrWnE8Gei4zCVvtVlYn37rPNK8c/tc2zbtnrtrmdiVBwa+1lVT3p9vmmql5249jNaAbQcahp+piMZwrdziiM/HJiP88m/n4nrbWjbjx7E9s97X5+0u3vtLX2cmKdk6o66vb7ogt1vQ8LThzL5zOO324+BL5O8iHsOrd7jGfe6+Fo4txOH7Px6+Of72MygLnbheKmzX2PtdYuqup5RoHAvSTfVtXrqXOy2x2P7Yyuv+mZf0/z4bq9S/D6IqOA4vRxHwchj+4a5L7HvTUez/QzY67tzXlP3WfsCzHPfVRVh917J621o4ltve6upScZXV+PJ3b1EM/h+7r39XjP5+L43J9k4jctzLnNZT2flm7O6+2qfuChvlMXfh1Muc0zf2x8HHYn/vy2Ow43OZqa6f2msS38mX7F8X2oZ+Vtjv3M45T57rc79Y7XmfgHZg86Yz0AAAAAc2qtWSwWi8VisVgsFovFYrFYBrIkOU7SrlneZhRC279mG9vXbOcwXVBr4rX9iXVfTH1+/77bvKHeV9fUepxke0ZtV63zbZInV+zn4Ip13nTbbKP/VPbROvvjccx5rN9Mj39ivcNraji4Yp39OY7vjTXMM557XmN73bGZte7BxFj2p/Z5fJtaus/uTmzz1aLvsanje9P2jpPsXTPGV7c8l8cTx/fFFfs6vMc1MO+9dd0zY57t3fmemmdftz0ud3x+3+o+mtj3t0l2r6hnfP88u+99d1Otk9fWdc+d+16PtxjHPM/F40Vuc97n05zXy0Ocl+9t8x7X28x7+yG/Ux/iOrjFM3rWsp+Pv3PvshzeZmwP9Uy/7v2HeFZeU99teqh5+4E79Y63uNae3ObzFovFYrFYLBaLxWKxWCyW5S7VWgsAAAAA66ebmXI8O+VFktetm8l66r2XbWKG626G0+0r3ptrmzeMcy8fZroeb/fa2TdnrHPWjeXimnXGs5SO1zltrb1e0LEezzA99rrdMHvojPHcWMNDmmc897keJmbq/t66q2bG9Tg+fifX1VRVb7pj8OVN572qjrt9HLXWns+45m59z92xlttcB9c9M+68vYn17npPzbWvRVrGff0Qz+E5xvAg1+NDHL85n21r83y6jxvu7Yf8Th3U9+NDWNYz/Yp99/6snBrPne+3eXrHGdt4m1EY/ss+6gYAAADgegLuAAAAAAA9qKqDjGbufdpae3nDZz8KQ/Y9djab6xHuxz3Ury4g/yaOPwAAAMBgbfU9AAAAAACATdSF2s/y8ay9AMDDOsho1vejvgcCAAAAwGwC7gAAAAAA/XmeZL+q9vseyKaqqsOqanMuztuGct3Aaqqq3YwC7i9baxd9jwcAAACA2R71PQAAAAAAgE3VWntdVa+TPEty0vd4NtTLzH/sT/sePL1x3cBqepbktLX2vO+BAAAAAHC1aq31PQYAAAAAgI1VVdtJ9jIK3F1c8ZmDJLtJTlprgvD0yvUI9+Me6k/3GxTOWmtnfY8FAAAAgKsJuAMAAAAAAAAAAAAAMAj/f8LvA4rphgPzAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEwLTExVDEwOjE5OjEzLTA0OjAwfaDREwAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMC0xMVQxMDoxOToxMy0wNDowMAz9aa8AAAAhdEVYdHBkZjpIaVJlc0JvdW5kaW5nQm94ADE0NDB4ODY0KzArMH1m3LsAAAAUdEVYdHBkZjpWZXJzaW9uAFBERi0xLjQgHEc6eAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
> output/mashr/protocol_example.ed_mixture.EZ.prior.pdf:
" ], "text/plain": [ ">>> output/mashr/protocol_example.ed_mixture.EZ.prior.pdf:\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "bash: output/mashr/protocol_example.ed_mixture.EZ.prior.pdf: Permission denied\n" ] } ], "source": [ "%preview -n -s png output/mashr/protocol_example.ed_mixture.EZ.prior.pdf" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS", "tags": [] }, "source": [ "## Global parameters" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "[global]\n", "parameter: cwd = path('./mashr_workflow_output')\n", "# Input summary statistics data\n", "parameter: data = path\n", "# Prefix of output files. If not specified, it will derive it from data.\n", "# If it is specified, for example, `--output-prefix AnalysisResults`\n", "# It will save output files as `{cwd}/AnalysisResults*`.\n", "parameter: output_prefix = ''\n", "parameter: output_suffix = 'all'\n", "# Exchangable effect (EE) or exchangable z-scores (EZ)\n", "parameter: effect_model = 'EE'\n", "# Identifier of $\\hat{V}$ estimate file\n", "# Options are \"identity\", \"simple\", \"mle\", \"vhat_corshrink_xcondition\", \"vhat_simple_specific\"\n", "parameter: vhat = 'simple'\n", "parameter: mixture_components = ['flash', 'flash_nonneg', 'pca',\"canonical\"]\n", "parameter: container = \"\"\n", "# For cluster jobs, number commands to run per job\n", "parameter: job_size = 1\n", "# Wall clock time expected\n", "parameter: walltime = \"5h\"\n", "# Memory expected\n", "parameter: mem = \"16G\"\n", "# Number of threads\n", "parameter: numThreads = 1\n", "import re\n", "parameter: entrypoint= ('micromamba run -a \"\" -n' + ' ' + re.sub(r'(_apptainer:latest|_docker:latest|\\.sif)$', '', container.split('/')[-1])) if container else \"\"\n", "data = data.absolute()\n", "cwd = cwd.absolute()\n", "if len(output_prefix) == 0:\n", " output_prefix = f\"{data:bn}\"\n", "prior_data = file_target(f\"{cwd:a}/{output_prefix}.{effect_model}.prior.rds\")\n", "vhat_data = file_target(f\"{cwd:a}/{output_prefix}.{effect_model}.V_{vhat}.rds\")\n", "\n", "def sort_uniq(seq):\n", " seen = set()\n", " return [x for x in seq if not (x in seen or seen.add(x))]" ] }, { "cell_type": "markdown", "metadata": { "kernel": "Bash" }, "source": [ "## Factor analyses" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# Perform FLASH analysis with non-negative factor constraint\n", "[flash]\n", "input: data\n", "output: f\"{cwd}/{output_prefix}.flash.rds\"\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint=entrypoint\n", " dat = readRDS(${_input:r})\n", " dat = mashr::mash_set_data(dat$strong.b, Shat=dat$strong.s, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " res = mashr::cov_flash(dat, factors=\"default\", remove_singleton=${\"TRUE\" if \"canonical\" in mixture_components else \"FALSE\"}, output_model=\"${_output:n}.model.rds\")\n", " saveRDS(res, ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# Perform FLASH analysis with non-negative factor constraint\n", "[flash_nonneg]\n", "input: data\n", "output: f\"{cwd}/{output_prefix}.flash_nonneg.rds\"\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint=entrypoint\n", " dat = readRDS(${_input:r})\n", " dat = mashr::mash_set_data(dat$strong.b, Shat=dat$strong.s, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " res = mashr::cov_flash(dat, factors=\"nonneg\", remove_singleton=${\"TRUE\" if \"canonical\" in mixture_components else \"FALSE\"}, output_model=\"${_output:n}.model.rds\")\n", " saveRDS(res, ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "[pca]\n", "# Number of components in PCA analysis for prior\n", "# set to 3 as in mash paper\n", "parameter: npc = 2\n", "input: data\n", "output: f\"{cwd}/{output_prefix}.pca.rds\"\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint=entrypoint\n", " dat = readRDS(${_input:r})\n", " dat = mashr::mash_set_data(dat$strong.b, Shat=dat$strong.s, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " res = mashr::cov_pca(dat, ${npc})\n", " saveRDS(res, ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "[canonical]\n", "input: data\n", "output: f\"{cwd}/{output_prefix}.canonical.rds\"\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint=entrypoint\n", " library(\"mashr\")\n", " dat = readRDS(${_input:r})\n", " dat = mashr::mash_set_data(dat$strong.b, Shat=dat$strong.s, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " res = mashr::cov_canonical(dat)\n", " saveRDS(res, ${_output:r})" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS" }, "source": [ "## Estimate residual variance\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# V estimate: \"identity\" method\n", "[vhat_identity]\n", "input: data\n", "output: f'{vhat_data:nn}.V_identity.rds'\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", workdir = cwd, stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " dat = readRDS(${_input:r})\n", " saveRDS(diag(ncol(dat$random.b)), ${_output:r})" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# V estimate: \"simple\" method (using null z-scores)\n", "[vhat_simple]\n", "input: data\n", "output: f'{vhat_data:nn}.V_simple.rds'\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", workdir = cwd, stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " library(mashr)\n", " dat = readRDS(${_input:r})\n", " vhat = estimate_null_correlation_simple(mash_set_data(dat$null.b, Shat=dat$null.s, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3))\n", " saveRDS(vhat, ${_output:r})" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# V estimate: \"mle\" method\n", "[vhat_mle]\n", "# number of samples to use\n", "parameter: n_subset = 6000\n", "# maximum number of iterations\n", "parameter: max_iter = 6\n", "\n", "input: data, prior_data\n", "output: f'{vhat_data:nn}.V_mle.rds'\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", workdir = cwd, stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " library(mashr)\n", " dat = readRDS(${_input[0]:r})\n", " # choose random subset\n", " set.seed(1)\n", " random.subset = sample(1:nrow(dat$random.b), min(${n_subset}, nrow(dat$random.b)))\n", " random.subset = mash_set_data(dat$random.b[random.subset,], dat$random.s[random.subset,], alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " # estimate V mle\n", " vhatprior = mash_estimate_corr_em(random.subset, readRDS(${_input[1]:r})$U, max_iter = ${max_iter})\n", " vhat = vhatprior$V\n", " saveRDS(vhat, ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# Estimate each V separately via corshrink\n", "[vhat_corshrink_xcondition_1]\n", "# Utility script\n", "parameter: util_script = path('/project/mstephens/gtex/scripts/SumstatQuery.R')\n", "# List of genes to analyze\n", "parameter: gene_list = path()\n", "\n", "fail_if(not gene_list.is_file(), msg = 'Please specify valid path for --gene-list')\n", "fail_if(not util_script.is_file() and len(str(util_script)), msg = 'Please specify valid path for --util-script')\n", "genes = sort_uniq([x.strip().strip('\"') for x in open(f'{gene_list:a}').readlines() if not x.strip().startswith('#')])\n", "\n", "\n", "depends: R_library(\"CorShrink\")\n", "input: data, for_each = 'genes'\n", "output: f'{vhat_data:nn}/{vhat_data:bnn}_V_corshrink_{_genes}.rds'\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", workdir = cwd, stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " source(${util_script:r})\n", " CorShrink_sum = function(gene, database, z_thresh = 2){\n", " print(gene)\n", " dat <- GetSS(gene, database)\n", " z = dat$\"z-score\"\n", " max_absz = apply(abs(z), 1, max)\n", " nullish = which(max_absz < z_thresh)\n", " # if (length(nullish) < ncol(z)) {\n", " # stop(\"not enough null data to estimate null correlation\")\n", " # }\n", " if (length(nullish) <= 1){\n", " mat = diag(ncol(z))\n", " } else {\n", " nullish_z = z[nullish, ] \n", " mat = as.matrix(CorShrink::CorShrinkData(nullish_z, ash.control = list(mixcompdist = \"halfuniform\"))$cor)\n", " }\n", " return(mat)\n", " }\n", " V = Corshrink_sum(\"${_genes}\", ${data:r})\n", " saveRDS(V, ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# Estimate each V separately via \"simple\" method\n", "[vhat_simple_specific_1]\n", "# Utility script\n", "parameter: util_script = path('/project/mstephens/gtex/scripts/SumstatQuery.R')\n", "# List of genes to analyze\n", "parameter: gene_list = path()\n", "\n", "fail_if(not gene_list.is_file(), msg = 'Please specify valid path for --gene-list')\n", "fail_if(not util_script.is_file() and len(str(util_script)), msg = 'Please specify valid path for --util-script')\n", "genes = sort_uniq([x.strip().strip('\"') for x in open(f'{gene_list:a}').readlines() if not x.strip().startswith('#')])\n", "\n", "depends: R_library(\"Matrix\")\n", "input: data, for_each = 'genes'\n", "output: f'{vhat_data:nn}/{vhat_data:bnn}_V_simple_{_genes}.rds'\n", "\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", workdir = cwd, stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " source(${util_script:r})\n", " simple_V = function(gene, database, z_thresh = 2){\n", " print(gene)\n", " dat <- GetSS(gene, database)\n", " z = dat$\"z-score\"\n", " max_absz = apply(abs(z), 1, max)\n", " nullish = which(max_absz < z_thresh)\n", " # if (length(nullish) < ncol(z)) {\n", " # stop(\"not enough null data to estimate null correlation\")\n", " # }\n", " if (length(nullish) <= 1){\n", " mat = diag(ncol(z))\n", " } else {\n", " nullish_z = z[nullish, ]\n", " mat = as.matrix(Matrix::nearPD(as.matrix(cov(nullish_z)), conv.tol=1e-06, doSym = TRUE, corr=TRUE)$mat)\n", " }\n", " return(mat)\n", " }\n", " V = simple_V(\"${_genes}\", ${data:r})\n", " saveRDS(V, ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# Consolidate Vhat into one file\n", "[vhat_corshrink_xcondition_2, vhat_simple_specific_2]\n", "depends: R_library(\"parallel\")\n", "# List of genes to analyze\n", "parameter: gene_list = path()\n", "\n", "fail_if(not gene_list.is_file(), msg = 'Please specify valid path for --gene-list')\n", "genes = paths([x.strip().strip('\"') for x in open(f'{gene_list:a}').readlines() if not x.strip().startswith('#')])\n", "\n", "\n", "input: group_by = 'all'\n", "output: f\"{vhat_data:nn}.V_{step_name.rsplit('_',1)[0]}.rds\"\n", "\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", workdir = cwd, stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " library(parallel)\n", " files = sapply(c(${genes:r,}), function(g) paste0(c(${_input[0]:adr}), '/', g, '.rds'), USE.NAMES=FALSE)\n", " V = mclapply(files, function(i){ readRDS(i) }, mc.cores = 1)\n", " R = dim(V[[1]])[1]\n", " L = length(V)\n", " V.array = array(as.numeric(unlist(V)), dim=c(R, R, L))\n", " saveRDS(V.array, ${_output:ar})" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS", "tags": [] }, "source": [ "## Compute multivariate mixture" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "# Latest update: May/2023\n", "[ud]\n", "# Options are \"ted\", \"ed\", \n", "parameter: unconstrained_prior = \"ted\"\n", "input:[data, vhat_data if vhat != \"mle\" else f'{vhat_data:nn}.V_simple.rds'] \n", "output: prior_data\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " library(stringr)\n", " library(udr)\n", " library(mashr)\n", "\n", " rds_files = c(${_input:r,})\n", " # mash data \n", " dat = readRDS(rds_files[1])\n", " vhat = readRDS(rds_files[2])\n", "\n", " # Fit mixture model using udr package\n", " mash_data = mash_set_data(dat$strong.b, Shat=dat$strong.s, V=vhat, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " # Canonical matrices\n", " U.can = cov_canonical(mash_data) \n", "\n", " set.seed(999)\n", " # Penalty strength\n", " lambda = ncol(dat$strong.z)\n", " # Initialize udr\n", " fit0 <- ud_init(mash_data, n_unconstrained = 50, U_scaled = U.can)\n", " # Fit udr and use penalty as default as suggested by Yunqi\n", " # penalty is necessary in small sample size case, and there won't be a difference in large sample size \n", " fit2 = ud_fit(fit0, control = list(unconstrained.update = \"${unconstrained_prior}\", scaled.update = \"fa\", resid.update = 'none', \n", " lambda =lambda, penalty.type = \"iw\", maxiter=1e3, tol = 1e-2, tol.lik = 1e-2))\n", "\n", " # extract data-driven covariance from udr model. (A list of covariance matrices)\n", " U.ud <- lapply(fit2$U,function (e) \"[[\"(e,\"mat\")) \n", "\n", " saveRDS(list(U=U.ud, w=fit2$w, loglik=fit2$loglik), ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "[ud_unconstrained]\n", "# Method is `ed` or `ted`\n", "parameter: ud_method = \"ed\"\n", "# A typical choice is to estimate scales only for canonical components\n", "parameter: scale_only = []\n", "# Tolerance for change in likelihood\n", "parameter: ud_tol_lik = 1e-3\n", "input: [data, vhat_data if vhat != \"mle\" else f'{vhat_data:nn}.V_simple.rds'] + [f\"{cwd}/{output_prefix}.{m}.rds\" for m in mixture_components]\n", "output: prior_data\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " library(stringr)\n", " rds_files = c(${_input:r,})\n", " dat = readRDS(rds_files[1])\n", " vhat = readRDS(rds_files[2])\n", " mash_data = mash_set_data(dat$strong.b, Shat=dat$strong.s, V=vhat, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " # U is different from mashr pipeline, here I kept the later one\n", " # U = list(XtX = dat$XtX)\n", " U = list(XtX = t(mash_data$Bhat) %*% mash_data$Bhat / nrow(mash_data$Bhat))\n", "\n", " U_scaled = list()\n", " mixture_components = c(${paths(mixture_components):r,})\n", " scale_only = c(${paths(scale_only):r,})\n", " scale_idx = which(mixture_components %in% scale_only )\n", " for (f in 3:length(rds_files) ) {\n", " if ((f - 1) %in% scale_idx ) {\n", " U_scaled = c(U_scaled, readRDS(rds_files[f]))\n", " } else {\n", " U = c(U, readRDS(rds_files[f]))\n", " }\n", " }\n", " \n", " # Fit mixture model using udr package\n", " library(udr)\n", " message(paste(\"Running ${ud_method.upper()} via udr package for\", length(U), \"mixture components\"))\n", " f0 = ud_init(X = as.matrix(dat$strong.z), V = V, U_scaled = U_scaled, U_unconstrained = U, n_rank1=0)\n", " res = ud_fit(f0, X = na.omit(f0$X), control = list(unconstrained.update = \"ed\", resid.update = 'none', scaled.update = \"fa\", maxiter=5000, tol.lik = ${ud_tol_lik}), verbose=TRUE)\n", " res_ted = ud_fit(f0, X = na.omit(f0$X), control = list(unconstrained.update = \"ted \", resid.update = 'none', scaled.update = \"fa\", maxiter=5000, tol.lik = ${ud_tol_lik}), verbose=TRUE)\n", "\n", " saveRDS(list(U=res$U, w=res$w, loglik=res$loglik), ${_output:r})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "[ed_bovy]\n", "parameter: ed_tol = 1e-6\n", "input: [data, vhat_data if vhat != \"mle\" else f'{vhat_data:nn}.V_simple.rds'] + [f\"{cwd}/{output_prefix}.{m}.rds\" for m in mixture_components]\n", "output: prior_data\n", "task: trunk_workers = 1, trunk_size = job_size, walltime = walltime, mem = mem, tags = f'{step_name}_{_output:bn}' \n", "R: expand = \"${ }\", stderr = f\"{_output:n}.stderr\", stdout = f\"{_output:n}.stdout\", container = container, entrypoint=entrypoint\n", " library(mashr)\n", " rds_files = c(${_input:r,})\n", " dat = readRDS(rds_files[1])\n", " vhat = readRDS(rds_files[2])\n", " mash_data = mash_set_data(dat$strong.b, Shat=dat$strong.s, V=vhat, alpha=${1 if effect_model == 'EZ' else 0}, zero_Bhat_Shat_reset = 1E3)\n", " # U is different from mashr pipeline, here I kept the later one\n", " # U = list(XtX = dat$XtX)\n", " U = list(XtX = t(mash_data$Bhat) %*% mash_data$Bhat / nrow(mash_data$Bhat))\n", " \n", " for (f in rds_files[3:length(rds_files)]) U = c(U, readRDS(f))\n", " # Fit mixture model using ED code by J. Bovy\n", " message(paste(\"Running ED via J. Bovy's code for\", length(U), \"mixture components\"))\n", " res = mashr:::bovy_wrapper(mash_data, U, logfile=${_output:nr}, tol = ${ed_tol})\n", " saveRDS(list(U=res$Ulist, w=res$pi, loglik=scan(\"${_output:n}_loglike.log\")), ${_output:r})" ] }, { "cell_type": "markdown", "metadata": { "kernel": "SoS", "tags": [] }, "source": [ "## Plot patterns of sharing\n", "\n", "This is a simple utility function that takes the output from the pipeline above and make some heatmap to show major patterns of multivariate effects. The plots will be ordered by their mixture weights." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "kernel": "SoS" }, "outputs": [], "source": [ "[plot_U]\n", "parameter: data = path\n", "# number of components to show\n", "parameter: max_comp = -1\n", "# whether or not to convert to correlation\n", "parameter: to_cor = False\n", "parameter: tol = \"1E-6\"\n", "parameter: remove_label = False\n", "parameter: name = \"\"\n", "input: data\n", "output: f'{cwd:a}/{_input:bn}{(\"_\" + name.replace(\"$\", \"_\")) if name != \"\" else \"\"}.pdf'\n", "R: expand = \"${ }\", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint=entrypoint\n", " library(reshape2)\n", " library(ggplot2)\n", " plot_sharing = function(X, col = 'black', to_cor=FALSE, title=\"\", remove_names=F) {\n", " clrs <- colorRampPalette(rev(c(\"#D73027\",\"#FC8D59\",\"#FEE090\",\"#FFFFBF\",\n", " \"#E0F3F8\",\"#91BFDB\",\"#4575B4\")))(128)\n", " if (to_cor) lat <- cov2cor(X)\n", " else lat = X/max(diag(X))\n", " lat[lower.tri(lat)] <- NA\n", " n <- nrow(lat)\n", " if (remove_names) {\n", " colnames(lat) = paste('t',1:n, sep = '')\n", " rownames(lat) = paste('t',1:n, sep = '')\n", " }\n", " melted_cormat <- melt(lat[n:1,], na.rm = TRUE)\n", " p = ggplot(data = melted_cormat, aes(Var2, Var1, fill = value))+\n", " geom_tile(color = \"white\")+ggtitle(title) + \n", " scale_fill_gradientn(colors = clrs, limit = c(-1,1), space = \"Lab\") +\n", " theme_minimal()+ \n", " coord_fixed() +\n", " theme(axis.title.x = element_blank(),\n", " axis.title.y = element_blank(),\n", " axis.text.x = element_text(color=col, size=8,angle=45,hjust=1),\n", " axis.text.y = element_text(color=rev(col), size=8),\n", " title =element_text(size=10),\n", " # panel.grid.major = element_blank(),\n", " panel.border = element_blank(),\n", " panel.background = element_blank(),\n", " axis.ticks = element_blank(),\n", " legend.justification = c(1, 0),\n", " legend.position = c(0.6, 0),\n", " legend.direction = \"horizontal\")+\n", " guides(fill = guide_colorbar(title=\"\", barwidth = 7, barheight = 1,\n", " title.position = \"top\", title.hjust = 0.5))\n", " if(remove_names){\n", " p = p + scale_x_discrete(labels= 1:n) + scale_y_discrete(labels= n:1)\n", " }\n", " return(p)\n", " }\n", " \n", " dat = readRDS(${_input:r})\n", " name = \"${name}\"\n", " if (name != \"\") {\n", " if (is.null(dat[[name]])) stop(\"Cannot find data ${name} in ${_input}\")\n", " dat = dat[[name]]\n", " }\n", " if (is.null(names(dat$U))) names(dat$U) = paste0(\"Comp_\", 1:length(dat$U))\n", " meta = data.frame(names(dat$U), dat$w, stringsAsFactors=F)\n", " colnames(meta) = c(\"U\", \"w\")\n", " tol = ${tol}\n", " n_comp = length(meta$U[which(meta$w>tol)])\n", " meta = head(meta[order(meta[,2], decreasing = T),], ${max_comp if max_comp > 1 else \"nrow(meta)\"})\n", " message(paste(n_comp, \"components out of\", length(dat$w), \"total components have weight greater than\", tol))\n", " res = list()\n", " for (i in 1:n_comp) {\n", " title = paste(meta$U[i], \"w =\", round(meta$w[i], 6))\n", " ##Handle updated udr data structure\n", " if(is.list(dat$U[[meta$U[i]]])){\n", " res[[i]] = plot_sharing(dat$U[[meta$U[i]]]$mat, to_cor = ${\"T\" if to_cor else \"F\"}, title=title, remove_names = ${\"TRUE\" if remove_label else \"FALSE\"})\n", " } else if(is.matrix(dat$U[[meta$U[i]]])){\n", " res[[i]] = plot_sharing(dat$U[[meta$U[i]]], to_cor = ${\"T\" if to_cor else \"F\"}, title=title, remove_names = ${\"TRUE\" if remove_label else \"FALSE\"})\n", " }\n", " }\n", " unit = 4\n", " n_col = 5\n", " n_row = ceiling(n_comp / n_col)\n", " pdf(${_output:r}, width = unit * n_col, height = unit * n_row)\n", " do.call(gridExtra::grid.arrange, c(res, list(ncol = n_col, nrow = n_row, bottom = \"Data source: readRDS(${_input:br})${('$'+name) if name else ''}\")))\n", " dev.off()" ] } ], "metadata": { "kernelspec": { "display_name": "SoS", "language": "sos", "name": "sos" }, "language_info": { "codemirror_mode": "sos", "file_extension": ".sos", "mimetype": "text/x-sos", "name": "sos", "nbconvert_exporter": "sos_notebook.converter.SoS_Exporter", "pygments_lexer": "sos" }, "sos": { "kernels": [ [ "R" ], [ "SoS" ] ], "version": "0.24.3" } }, "nbformat": 4, "nbformat_minor": 4 }