Performs SuSiE regression using z-scores and correlation matrix. Supports both standard RSS (lambda = 0) and RSS with regularized LD matrix (lambda > 0).
Usage
susie_rss(
z = NULL,
R,
n = NULL,
bhat = NULL,
shat = NULL,
var_y = NULL,
L = min(10, ncol(R)),
lambda = 0,
maf = NULL,
maf_thresh = 0,
z_ld_weight = 0,
prior_variance = 50,
scaled_prior_variance = 0.2,
residual_variance = NULL,
prior_weights = NULL,
null_weight = 0,
standardize = TRUE,
intercept_value = 0,
estimate_residual_variance = FALSE,
estimate_residual_method = c("MoM", "MLE"),
estimate_prior_variance = TRUE,
estimate_prior_method = c("optim", "EM", "simple"),
unmappable_effects = c("none", "inf"),
check_null_threshold = 0,
prior_tol = 1e-09,
residual_variance_lowerbound = 0,
residual_variance_upperbound = Inf,
model_init = NULL,
coverage = 0.95,
min_abs_corr = 0.5,
max_iter = 100,
tol = 0.001,
convergence_method = c("elbo", "pip"),
verbose = FALSE,
track_fit = FALSE,
check_input = FALSE,
check_prior = TRUE,
check_R = TRUE,
check_z = FALSE,
n_purity = 100,
r_tol = 1e-08,
refine = FALSE
)Arguments
- z
A p-vector of z-scores.
- R
A p by p correlation matrix.
- n
The sample size, not required but recommended.
- bhat
Alternative summary data giving the estimated effects (a vector of length p). This, together with
shat, may be provided instead ofz.- shat
Alternative summary data giving the standard errors of the estimated effects (a vector of length p). This, together with
bhat, may be provided instead ofz.- lambda
Regularization parameter for LD matrix. When
lambda> 0, you cannot useunmappable_effectsmethods.- z_ld_weight
This parameter is included for backwards compatibility with previous versions of the function, but it is no longer recommended to set this to a non-zero value. When
z_ld_weight > 0, the matrixRis adjusted to becov2cor((1-w)*R + w*tcrossprod(z)), wherew = z_ld_weight.- estimate_residual_variance
The default is FALSE, the residual variance is fixed to 1 or variance of y. If the in-sample LD matrix is provided, we recommend setting
estimate_residual_variance = TRUE.- check_R
If TRUE, check that R is positive semidefinite.
- check_z
If TRUE, check that z lies in column space of R.